1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Bosch BMC150 three-axis magnetic field sensor driver
4 *
5 * Copyright (c) 2015, Intel Corporation.
6 *
7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
8 *
9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
10 */
11
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/acpi.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/trigger_consumer.h>
26 #include <linux/iio/triggered_buffer.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29
30 #include "bmc150_magn.h"
31
32 #define BMC150_MAGN_DRV_NAME "bmc150_magn"
33 #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event"
34
35 #define BMC150_MAGN_REG_CHIP_ID 0x40
36 #define BMC150_MAGN_CHIP_ID_VAL 0x32
37
38 #define BMC150_MAGN_REG_X_L 0x42
39 #define BMC150_MAGN_REG_X_M 0x43
40 #define BMC150_MAGN_REG_Y_L 0x44
41 #define BMC150_MAGN_REG_Y_M 0x45
42 #define BMC150_MAGN_SHIFT_XY_L 3
43 #define BMC150_MAGN_REG_Z_L 0x46
44 #define BMC150_MAGN_REG_Z_M 0x47
45 #define BMC150_MAGN_SHIFT_Z_L 1
46 #define BMC150_MAGN_REG_RHALL_L 0x48
47 #define BMC150_MAGN_REG_RHALL_M 0x49
48 #define BMC150_MAGN_SHIFT_RHALL_L 2
49
50 #define BMC150_MAGN_REG_INT_STATUS 0x4A
51
52 #define BMC150_MAGN_REG_POWER 0x4B
53 #define BMC150_MAGN_MASK_POWER_CTL BIT(0)
54
55 #define BMC150_MAGN_REG_OPMODE_ODR 0x4C
56 #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1)
57 #define BMC150_MAGN_SHIFT_OPMODE 1
58 #define BMC150_MAGN_MODE_NORMAL 0x00
59 #define BMC150_MAGN_MODE_FORCED 0x01
60 #define BMC150_MAGN_MODE_SLEEP 0x03
61 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3)
62 #define BMC150_MAGN_SHIFT_ODR 3
63
64 #define BMC150_MAGN_REG_INT 0x4D
65
66 #define BMC150_MAGN_REG_INT_DRDY 0x4E
67 #define BMC150_MAGN_MASK_DRDY_EN BIT(7)
68 #define BMC150_MAGN_SHIFT_DRDY_EN 7
69 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6)
70 #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5)
71 #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4)
72 #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3)
73 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2)
74 #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1)
75 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0)
76
77 #define BMC150_MAGN_REG_LOW_THRESH 0x4F
78 #define BMC150_MAGN_REG_HIGH_THRESH 0x50
79 #define BMC150_MAGN_REG_REP_XY 0x51
80 #define BMC150_MAGN_REG_REP_Z 0x52
81 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0)
82
83 #define BMC150_MAGN_REG_TRIM_START 0x5D
84 #define BMC150_MAGN_REG_TRIM_END 0x71
85
86 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096
87 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384
88
89 /* Time from SUSPEND to SLEEP */
90 #define BMC150_MAGN_START_UP_TIME_MS 3
91
92 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000
93
94 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
95 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
96 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
97 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
98
99 enum bmc150_magn_axis {
100 AXIS_X,
101 AXIS_Y,
102 AXIS_Z,
103 RHALL,
104 AXIS_XYZ_MAX = RHALL,
105 AXIS_XYZR_MAX,
106 };
107
108 enum bmc150_magn_power_modes {
109 BMC150_MAGN_POWER_MODE_SUSPEND,
110 BMC150_MAGN_POWER_MODE_SLEEP,
111 BMC150_MAGN_POWER_MODE_NORMAL,
112 };
113
114 struct bmc150_magn_trim_regs {
115 s8 x1;
116 s8 y1;
117 __le16 reserved1;
118 u8 reserved2;
119 __le16 z4;
120 s8 x2;
121 s8 y2;
122 __le16 reserved3;
123 __le16 z2;
124 __le16 z1;
125 __le16 xyz1;
126 __le16 z3;
127 s8 xy2;
128 u8 xy1;
129 } __packed;
130
131 struct bmc150_magn_data {
132 struct device *dev;
133 /*
134 * 1. Protect this structure.
135 * 2. Serialize sequences that power on/off the device and access HW.
136 */
137 struct mutex mutex;
138 struct regmap *regmap;
139 struct regulator_bulk_data regulators[2];
140 struct iio_mount_matrix orientation;
141 /* Ensure timestamp is naturally aligned */
142 struct {
143 s32 chans[3];
144 s64 timestamp __aligned(8);
145 } scan;
146 struct iio_trigger *dready_trig;
147 bool dready_trigger_on;
148 int max_odr;
149 int irq;
150 };
151
152 static const struct {
153 int freq;
154 u8 reg_val;
155 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
156 {6, 0x02},
157 {8, 0x03},
158 {10, 0x00},
159 {15, 0x04},
160 {20, 0x05},
161 {25, 0x06},
162 {30, 0x07} };
163
164 enum bmc150_magn_presets {
165 LOW_POWER_PRESET,
166 REGULAR_PRESET,
167 ENHANCED_REGULAR_PRESET,
168 HIGH_ACCURACY_PRESET
169 };
170
171 static const struct bmc150_magn_preset {
172 u8 rep_xy;
173 u8 rep_z;
174 u8 odr;
175 } bmc150_magn_presets_table[] = {
176 [LOW_POWER_PRESET] = {3, 3, 10},
177 [REGULAR_PRESET] = {9, 15, 10},
178 [ENHANCED_REGULAR_PRESET] = {15, 27, 10},
179 [HIGH_ACCURACY_PRESET] = {47, 83, 20},
180 };
181
182 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
183
bmc150_magn_is_writeable_reg(struct device * dev,unsigned int reg)184 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
185 {
186 switch (reg) {
187 case BMC150_MAGN_REG_POWER:
188 case BMC150_MAGN_REG_OPMODE_ODR:
189 case BMC150_MAGN_REG_INT:
190 case BMC150_MAGN_REG_INT_DRDY:
191 case BMC150_MAGN_REG_LOW_THRESH:
192 case BMC150_MAGN_REG_HIGH_THRESH:
193 case BMC150_MAGN_REG_REP_XY:
194 case BMC150_MAGN_REG_REP_Z:
195 return true;
196 default:
197 return false;
198 }
199 }
200
bmc150_magn_is_volatile_reg(struct device * dev,unsigned int reg)201 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
202 {
203 switch (reg) {
204 case BMC150_MAGN_REG_X_L:
205 case BMC150_MAGN_REG_X_M:
206 case BMC150_MAGN_REG_Y_L:
207 case BMC150_MAGN_REG_Y_M:
208 case BMC150_MAGN_REG_Z_L:
209 case BMC150_MAGN_REG_Z_M:
210 case BMC150_MAGN_REG_RHALL_L:
211 case BMC150_MAGN_REG_RHALL_M:
212 case BMC150_MAGN_REG_INT_STATUS:
213 return true;
214 default:
215 return false;
216 }
217 }
218
219 const struct regmap_config bmc150_magn_regmap_config = {
220 .reg_bits = 8,
221 .val_bits = 8,
222
223 .max_register = BMC150_MAGN_REG_TRIM_END,
224 .cache_type = REGCACHE_RBTREE,
225
226 .writeable_reg = bmc150_magn_is_writeable_reg,
227 .volatile_reg = bmc150_magn_is_volatile_reg,
228 };
229 EXPORT_SYMBOL(bmc150_magn_regmap_config);
230
bmc150_magn_set_power_mode(struct bmc150_magn_data * data,enum bmc150_magn_power_modes mode,bool state)231 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
232 enum bmc150_magn_power_modes mode,
233 bool state)
234 {
235 int ret;
236
237 switch (mode) {
238 case BMC150_MAGN_POWER_MODE_SUSPEND:
239 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
240 BMC150_MAGN_MASK_POWER_CTL, !state);
241 if (ret < 0)
242 return ret;
243 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
244 return 0;
245 case BMC150_MAGN_POWER_MODE_SLEEP:
246 return regmap_update_bits(data->regmap,
247 BMC150_MAGN_REG_OPMODE_ODR,
248 BMC150_MAGN_MASK_OPMODE,
249 BMC150_MAGN_MODE_SLEEP <<
250 BMC150_MAGN_SHIFT_OPMODE);
251 case BMC150_MAGN_POWER_MODE_NORMAL:
252 return regmap_update_bits(data->regmap,
253 BMC150_MAGN_REG_OPMODE_ODR,
254 BMC150_MAGN_MASK_OPMODE,
255 BMC150_MAGN_MODE_NORMAL <<
256 BMC150_MAGN_SHIFT_OPMODE);
257 }
258
259 return -EINVAL;
260 }
261
bmc150_magn_set_power_state(struct bmc150_magn_data * data,bool on)262 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
263 {
264 #ifdef CONFIG_PM
265 int ret;
266
267 if (on) {
268 ret = pm_runtime_resume_and_get(data->dev);
269 } else {
270 pm_runtime_mark_last_busy(data->dev);
271 ret = pm_runtime_put_autosuspend(data->dev);
272 }
273
274 if (ret < 0) {
275 dev_err(data->dev,
276 "failed to change power state to %d\n", on);
277 return ret;
278 }
279 #endif
280
281 return 0;
282 }
283
bmc150_magn_get_odr(struct bmc150_magn_data * data,int * val)284 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
285 {
286 int ret, reg_val;
287 u8 i, odr_val;
288
289 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, ®_val);
290 if (ret < 0)
291 return ret;
292 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
293
294 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
295 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
296 *val = bmc150_magn_samp_freq_table[i].freq;
297 return 0;
298 }
299
300 return -EINVAL;
301 }
302
bmc150_magn_set_odr(struct bmc150_magn_data * data,int val)303 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
304 {
305 int ret;
306 u8 i;
307
308 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
309 if (bmc150_magn_samp_freq_table[i].freq == val) {
310 ret = regmap_update_bits(data->regmap,
311 BMC150_MAGN_REG_OPMODE_ODR,
312 BMC150_MAGN_MASK_ODR,
313 bmc150_magn_samp_freq_table[i].
314 reg_val <<
315 BMC150_MAGN_SHIFT_ODR);
316 if (ret < 0)
317 return ret;
318 return 0;
319 }
320 }
321
322 return -EINVAL;
323 }
324
bmc150_magn_set_max_odr(struct bmc150_magn_data * data,int rep_xy,int rep_z,int odr)325 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
326 int rep_z, int odr)
327 {
328 int ret, reg_val, max_odr;
329
330 if (rep_xy <= 0) {
331 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
332 ®_val);
333 if (ret < 0)
334 return ret;
335 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
336 }
337 if (rep_z <= 0) {
338 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
339 ®_val);
340 if (ret < 0)
341 return ret;
342 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
343 }
344 if (odr <= 0) {
345 ret = bmc150_magn_get_odr(data, &odr);
346 if (ret < 0)
347 return ret;
348 }
349 /* the maximum selectable read-out frequency from datasheet */
350 max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
351 if (odr > max_odr) {
352 dev_err(data->dev,
353 "Can't set oversampling with sampling freq %d\n",
354 odr);
355 return -EINVAL;
356 }
357 data->max_odr = max_odr;
358
359 return 0;
360 }
361
bmc150_magn_compensate_x(struct bmc150_magn_trim_regs * tregs,s16 x,u16 rhall)362 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
363 u16 rhall)
364 {
365 s16 val;
366 u16 xyz1 = le16_to_cpu(tregs->xyz1);
367
368 if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
369 return S32_MIN;
370
371 if (!rhall)
372 rhall = xyz1;
373
374 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
375 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
376 ((s32)val)) >> 7)) + (((s32)val) *
377 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
378 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
379 (((s16)tregs->x1) << 3);
380
381 return (s32)val;
382 }
383
bmc150_magn_compensate_y(struct bmc150_magn_trim_regs * tregs,s16 y,u16 rhall)384 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
385 u16 rhall)
386 {
387 s16 val;
388 u16 xyz1 = le16_to_cpu(tregs->xyz1);
389
390 if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
391 return S32_MIN;
392
393 if (!rhall)
394 rhall = xyz1;
395
396 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
397 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
398 ((s32)val)) >> 7)) + (((s32)val) *
399 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
400 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
401 (((s16)tregs->y1) << 3);
402
403 return (s32)val;
404 }
405
bmc150_magn_compensate_z(struct bmc150_magn_trim_regs * tregs,s16 z,u16 rhall)406 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
407 u16 rhall)
408 {
409 s32 val;
410 u16 xyz1 = le16_to_cpu(tregs->xyz1);
411 u16 z1 = le16_to_cpu(tregs->z1);
412 s16 z2 = le16_to_cpu(tregs->z2);
413 s16 z3 = le16_to_cpu(tregs->z3);
414 s16 z4 = le16_to_cpu(tregs->z4);
415
416 if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
417 return S32_MIN;
418
419 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
420 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
421 ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
422
423 return val;
424 }
425
bmc150_magn_read_xyz(struct bmc150_magn_data * data,s32 * buffer)426 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
427 {
428 int ret;
429 __le16 values[AXIS_XYZR_MAX];
430 s16 raw_x, raw_y, raw_z;
431 u16 rhall;
432 struct bmc150_magn_trim_regs tregs;
433
434 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
435 values, sizeof(values));
436 if (ret < 0)
437 return ret;
438
439 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
440 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
441 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
442 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
443
444 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
445 &tregs, sizeof(tregs));
446 if (ret < 0)
447 return ret;
448
449 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
450 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
451 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
452
453 return 0;
454 }
455
bmc150_magn_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)456 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
457 struct iio_chan_spec const *chan,
458 int *val, int *val2, long mask)
459 {
460 struct bmc150_magn_data *data = iio_priv(indio_dev);
461 int ret, tmp;
462 s32 values[AXIS_XYZ_MAX];
463
464 switch (mask) {
465 case IIO_CHAN_INFO_RAW:
466 if (iio_buffer_enabled(indio_dev))
467 return -EBUSY;
468 mutex_lock(&data->mutex);
469
470 ret = bmc150_magn_set_power_state(data, true);
471 if (ret < 0) {
472 mutex_unlock(&data->mutex);
473 return ret;
474 }
475
476 ret = bmc150_magn_read_xyz(data, values);
477 if (ret < 0) {
478 bmc150_magn_set_power_state(data, false);
479 mutex_unlock(&data->mutex);
480 return ret;
481 }
482 *val = values[chan->scan_index];
483
484 ret = bmc150_magn_set_power_state(data, false);
485 if (ret < 0) {
486 mutex_unlock(&data->mutex);
487 return ret;
488 }
489
490 mutex_unlock(&data->mutex);
491 return IIO_VAL_INT;
492 case IIO_CHAN_INFO_SCALE:
493 /*
494 * The API/driver performs an off-chip temperature
495 * compensation and outputs x/y/z magnetic field data in
496 * 16 LSB/uT to the upper application layer.
497 */
498 *val = 0;
499 *val2 = 625;
500 return IIO_VAL_INT_PLUS_MICRO;
501 case IIO_CHAN_INFO_SAMP_FREQ:
502 ret = bmc150_magn_get_odr(data, val);
503 if (ret < 0)
504 return ret;
505 return IIO_VAL_INT;
506 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
507 switch (chan->channel2) {
508 case IIO_MOD_X:
509 case IIO_MOD_Y:
510 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
511 &tmp);
512 if (ret < 0)
513 return ret;
514 *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
515 return IIO_VAL_INT;
516 case IIO_MOD_Z:
517 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
518 &tmp);
519 if (ret < 0)
520 return ret;
521 *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
522 return IIO_VAL_INT;
523 default:
524 return -EINVAL;
525 }
526 default:
527 return -EINVAL;
528 }
529 }
530
bmc150_magn_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)531 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
532 struct iio_chan_spec const *chan,
533 int val, int val2, long mask)
534 {
535 struct bmc150_magn_data *data = iio_priv(indio_dev);
536 int ret;
537
538 switch (mask) {
539 case IIO_CHAN_INFO_SAMP_FREQ:
540 if (val > data->max_odr)
541 return -EINVAL;
542 mutex_lock(&data->mutex);
543 ret = bmc150_magn_set_odr(data, val);
544 mutex_unlock(&data->mutex);
545 return ret;
546 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
547 switch (chan->channel2) {
548 case IIO_MOD_X:
549 case IIO_MOD_Y:
550 if (val < 1 || val > 511)
551 return -EINVAL;
552 mutex_lock(&data->mutex);
553 ret = bmc150_magn_set_max_odr(data, val, 0, 0);
554 if (ret < 0) {
555 mutex_unlock(&data->mutex);
556 return ret;
557 }
558 ret = regmap_update_bits(data->regmap,
559 BMC150_MAGN_REG_REP_XY,
560 BMC150_MAGN_REG_REP_DATAMASK,
561 BMC150_MAGN_REPXY_TO_REGVAL
562 (val));
563 mutex_unlock(&data->mutex);
564 return ret;
565 case IIO_MOD_Z:
566 if (val < 1 || val > 256)
567 return -EINVAL;
568 mutex_lock(&data->mutex);
569 ret = bmc150_magn_set_max_odr(data, 0, val, 0);
570 if (ret < 0) {
571 mutex_unlock(&data->mutex);
572 return ret;
573 }
574 ret = regmap_update_bits(data->regmap,
575 BMC150_MAGN_REG_REP_Z,
576 BMC150_MAGN_REG_REP_DATAMASK,
577 BMC150_MAGN_REPZ_TO_REGVAL
578 (val));
579 mutex_unlock(&data->mutex);
580 return ret;
581 default:
582 return -EINVAL;
583 }
584 default:
585 return -EINVAL;
586 }
587 }
588
bmc150_magn_show_samp_freq_avail(struct device * dev,struct device_attribute * attr,char * buf)589 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
590 struct device_attribute *attr,
591 char *buf)
592 {
593 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
594 struct bmc150_magn_data *data = iio_priv(indio_dev);
595 size_t len = 0;
596 u8 i;
597
598 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
599 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
600 break;
601 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
602 bmc150_magn_samp_freq_table[i].freq);
603 }
604 /* replace last space with a newline */
605 buf[len - 1] = '\n';
606
607 return len;
608 }
609
610 static const struct iio_mount_matrix *
bmc150_magn_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)611 bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
612 const struct iio_chan_spec *chan)
613 {
614 struct bmc150_magn_data *data = iio_priv(indio_dev);
615
616 return &data->orientation;
617 }
618
619 static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
620 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
621 { }
622 };
623
624 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
625
626 static struct attribute *bmc150_magn_attributes[] = {
627 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
628 NULL,
629 };
630
631 static const struct attribute_group bmc150_magn_attrs_group = {
632 .attrs = bmc150_magn_attributes,
633 };
634
635 #define BMC150_MAGN_CHANNEL(_axis) { \
636 .type = IIO_MAGN, \
637 .modified = 1, \
638 .channel2 = IIO_MOD_##_axis, \
639 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
640 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
641 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
642 BIT(IIO_CHAN_INFO_SCALE), \
643 .scan_index = AXIS_##_axis, \
644 .scan_type = { \
645 .sign = 's', \
646 .realbits = 32, \
647 .storagebits = 32, \
648 .endianness = IIO_LE \
649 }, \
650 .ext_info = bmc150_magn_ext_info, \
651 }
652
653 static const struct iio_chan_spec bmc150_magn_channels[] = {
654 BMC150_MAGN_CHANNEL(X),
655 BMC150_MAGN_CHANNEL(Y),
656 BMC150_MAGN_CHANNEL(Z),
657 IIO_CHAN_SOFT_TIMESTAMP(3),
658 };
659
660 static const struct iio_info bmc150_magn_info = {
661 .attrs = &bmc150_magn_attrs_group,
662 .read_raw = bmc150_magn_read_raw,
663 .write_raw = bmc150_magn_write_raw,
664 };
665
666 static const unsigned long bmc150_magn_scan_masks[] = {
667 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
668 0};
669
bmc150_magn_trigger_handler(int irq,void * p)670 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
671 {
672 struct iio_poll_func *pf = p;
673 struct iio_dev *indio_dev = pf->indio_dev;
674 struct bmc150_magn_data *data = iio_priv(indio_dev);
675 int ret;
676
677 mutex_lock(&data->mutex);
678 ret = bmc150_magn_read_xyz(data, data->scan.chans);
679 if (ret < 0)
680 goto err;
681
682 iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
683 pf->timestamp);
684
685 err:
686 mutex_unlock(&data->mutex);
687 iio_trigger_notify_done(indio_dev->trig);
688
689 return IRQ_HANDLED;
690 }
691
bmc150_magn_init(struct bmc150_magn_data * data)692 static int bmc150_magn_init(struct bmc150_magn_data *data)
693 {
694 int ret, chip_id;
695 struct bmc150_magn_preset preset;
696
697 ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
698 data->regulators);
699 if (ret < 0) {
700 dev_err(data->dev, "Failed to enable regulators: %d\n", ret);
701 return ret;
702 }
703 /*
704 * 3ms power-on time according to datasheet, let's better
705 * be safe than sorry and set this delay to 5ms.
706 */
707 msleep(5);
708
709 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
710 false);
711 if (ret < 0) {
712 dev_err(data->dev,
713 "Failed to bring up device from suspend mode\n");
714 goto err_regulator_disable;
715 }
716
717 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
718 if (ret < 0) {
719 dev_err(data->dev, "Failed reading chip id\n");
720 goto err_poweroff;
721 }
722 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
723 dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
724 ret = -ENODEV;
725 goto err_poweroff;
726 }
727 dev_dbg(data->dev, "Chip id %x\n", chip_id);
728
729 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
730 ret = bmc150_magn_set_odr(data, preset.odr);
731 if (ret < 0) {
732 dev_err(data->dev, "Failed to set ODR to %d\n",
733 preset.odr);
734 goto err_poweroff;
735 }
736
737 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
738 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
739 if (ret < 0) {
740 dev_err(data->dev, "Failed to set REP XY to %d\n",
741 preset.rep_xy);
742 goto err_poweroff;
743 }
744
745 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
746 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
747 if (ret < 0) {
748 dev_err(data->dev, "Failed to set REP Z to %d\n",
749 preset.rep_z);
750 goto err_poweroff;
751 }
752
753 ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
754 preset.odr);
755 if (ret < 0)
756 goto err_poweroff;
757
758 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
759 true);
760 if (ret < 0) {
761 dev_err(data->dev, "Failed to power on device\n");
762 goto err_poweroff;
763 }
764
765 return 0;
766
767 err_poweroff:
768 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
769 err_regulator_disable:
770 regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
771 return ret;
772 }
773
bmc150_magn_reset_intr(struct bmc150_magn_data * data)774 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
775 {
776 int tmp;
777
778 /*
779 * Data Ready (DRDY) is always cleared after
780 * readout of data registers ends.
781 */
782 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
783 }
784
bmc150_magn_trig_reen(struct iio_trigger * trig)785 static void bmc150_magn_trig_reen(struct iio_trigger *trig)
786 {
787 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
788 struct bmc150_magn_data *data = iio_priv(indio_dev);
789 int ret;
790
791 if (!data->dready_trigger_on)
792 return;
793
794 mutex_lock(&data->mutex);
795 ret = bmc150_magn_reset_intr(data);
796 mutex_unlock(&data->mutex);
797 if (ret)
798 dev_err(data->dev, "Failed to reset interrupt\n");
799 }
800
bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)801 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
802 bool state)
803 {
804 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
805 struct bmc150_magn_data *data = iio_priv(indio_dev);
806 int ret = 0;
807
808 mutex_lock(&data->mutex);
809 if (state == data->dready_trigger_on)
810 goto err_unlock;
811
812 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
813 BMC150_MAGN_MASK_DRDY_EN,
814 state << BMC150_MAGN_SHIFT_DRDY_EN);
815 if (ret < 0)
816 goto err_unlock;
817
818 data->dready_trigger_on = state;
819
820 if (state) {
821 ret = bmc150_magn_reset_intr(data);
822 if (ret < 0)
823 goto err_unlock;
824 }
825 mutex_unlock(&data->mutex);
826
827 return 0;
828
829 err_unlock:
830 mutex_unlock(&data->mutex);
831 return ret;
832 }
833
834 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
835 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
836 .reenable = bmc150_magn_trig_reen,
837 };
838
bmc150_magn_buffer_preenable(struct iio_dev * indio_dev)839 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
840 {
841 struct bmc150_magn_data *data = iio_priv(indio_dev);
842
843 return bmc150_magn_set_power_state(data, true);
844 }
845
bmc150_magn_buffer_postdisable(struct iio_dev * indio_dev)846 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
847 {
848 struct bmc150_magn_data *data = iio_priv(indio_dev);
849
850 return bmc150_magn_set_power_state(data, false);
851 }
852
853 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
854 .preenable = bmc150_magn_buffer_preenable,
855 .postdisable = bmc150_magn_buffer_postdisable,
856 };
857
bmc150_magn_match_acpi_device(struct device * dev)858 static const char *bmc150_magn_match_acpi_device(struct device *dev)
859 {
860 const struct acpi_device_id *id;
861
862 id = acpi_match_device(dev->driver->acpi_match_table, dev);
863 if (!id)
864 return NULL;
865
866 return dev_name(dev);
867 }
868
bmc150_magn_probe(struct device * dev,struct regmap * regmap,int irq,const char * name)869 int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
870 int irq, const char *name)
871 {
872 struct bmc150_magn_data *data;
873 struct iio_dev *indio_dev;
874 int ret;
875
876 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
877 if (!indio_dev)
878 return -ENOMEM;
879
880 data = iio_priv(indio_dev);
881 dev_set_drvdata(dev, indio_dev);
882 data->regmap = regmap;
883 data->irq = irq;
884 data->dev = dev;
885
886 data->regulators[0].supply = "vdd";
887 data->regulators[1].supply = "vddio";
888 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators),
889 data->regulators);
890 if (ret)
891 return dev_err_probe(dev, ret, "failed to get regulators\n");
892
893 ret = iio_read_mount_matrix(dev, &data->orientation);
894 if (ret)
895 return ret;
896
897 if (!name && ACPI_HANDLE(dev))
898 name = bmc150_magn_match_acpi_device(dev);
899
900 mutex_init(&data->mutex);
901
902 ret = bmc150_magn_init(data);
903 if (ret < 0)
904 return ret;
905
906 indio_dev->channels = bmc150_magn_channels;
907 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
908 indio_dev->available_scan_masks = bmc150_magn_scan_masks;
909 indio_dev->name = name;
910 indio_dev->modes = INDIO_DIRECT_MODE;
911 indio_dev->info = &bmc150_magn_info;
912
913 if (irq > 0) {
914 data->dready_trig = devm_iio_trigger_alloc(dev,
915 "%s-dev%d",
916 indio_dev->name,
917 iio_device_id(indio_dev));
918 if (!data->dready_trig) {
919 ret = -ENOMEM;
920 dev_err(dev, "iio trigger alloc failed\n");
921 goto err_poweroff;
922 }
923
924 data->dready_trig->ops = &bmc150_magn_trigger_ops;
925 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
926 ret = iio_trigger_register(data->dready_trig);
927 if (ret) {
928 dev_err(dev, "iio trigger register failed\n");
929 goto err_poweroff;
930 }
931
932 ret = request_threaded_irq(irq,
933 iio_trigger_generic_data_rdy_poll,
934 NULL,
935 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
936 BMC150_MAGN_IRQ_NAME,
937 data->dready_trig);
938 if (ret < 0) {
939 dev_err(dev, "request irq %d failed\n", irq);
940 goto err_trigger_unregister;
941 }
942 }
943
944 ret = iio_triggered_buffer_setup(indio_dev,
945 iio_pollfunc_store_time,
946 bmc150_magn_trigger_handler,
947 &bmc150_magn_buffer_setup_ops);
948 if (ret < 0) {
949 dev_err(dev, "iio triggered buffer setup failed\n");
950 goto err_free_irq;
951 }
952
953 ret = pm_runtime_set_active(dev);
954 if (ret)
955 goto err_buffer_cleanup;
956
957 pm_runtime_enable(dev);
958 pm_runtime_set_autosuspend_delay(dev,
959 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
960 pm_runtime_use_autosuspend(dev);
961
962 ret = iio_device_register(indio_dev);
963 if (ret < 0) {
964 dev_err(dev, "unable to register iio device\n");
965 goto err_disable_runtime_pm;
966 }
967
968 dev_dbg(dev, "Registered device %s\n", name);
969 return 0;
970
971 err_disable_runtime_pm:
972 pm_runtime_disable(dev);
973 err_buffer_cleanup:
974 iio_triggered_buffer_cleanup(indio_dev);
975 err_free_irq:
976 if (irq > 0)
977 free_irq(irq, data->dready_trig);
978 err_trigger_unregister:
979 if (data->dready_trig)
980 iio_trigger_unregister(data->dready_trig);
981 err_poweroff:
982 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
983 return ret;
984 }
985 EXPORT_SYMBOL(bmc150_magn_probe);
986
bmc150_magn_remove(struct device * dev)987 int bmc150_magn_remove(struct device *dev)
988 {
989 struct iio_dev *indio_dev = dev_get_drvdata(dev);
990 struct bmc150_magn_data *data = iio_priv(indio_dev);
991
992 iio_device_unregister(indio_dev);
993
994 pm_runtime_disable(dev);
995 pm_runtime_set_suspended(dev);
996
997 iio_triggered_buffer_cleanup(indio_dev);
998
999 if (data->irq > 0)
1000 free_irq(data->irq, data->dready_trig);
1001
1002 if (data->dready_trig)
1003 iio_trigger_unregister(data->dready_trig);
1004
1005 mutex_lock(&data->mutex);
1006 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
1007 mutex_unlock(&data->mutex);
1008
1009 regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
1010 return 0;
1011 }
1012 EXPORT_SYMBOL(bmc150_magn_remove);
1013
1014 #ifdef CONFIG_PM
bmc150_magn_runtime_suspend(struct device * dev)1015 static int bmc150_magn_runtime_suspend(struct device *dev)
1016 {
1017 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1018 struct bmc150_magn_data *data = iio_priv(indio_dev);
1019 int ret;
1020
1021 mutex_lock(&data->mutex);
1022 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1023 true);
1024 mutex_unlock(&data->mutex);
1025 if (ret < 0) {
1026 dev_err(dev, "powering off device failed\n");
1027 return ret;
1028 }
1029 return 0;
1030 }
1031
1032 /*
1033 * Should be called with data->mutex held.
1034 */
bmc150_magn_runtime_resume(struct device * dev)1035 static int bmc150_magn_runtime_resume(struct device *dev)
1036 {
1037 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1038 struct bmc150_magn_data *data = iio_priv(indio_dev);
1039
1040 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1041 true);
1042 }
1043 #endif
1044
1045 #ifdef CONFIG_PM_SLEEP
bmc150_magn_suspend(struct device * dev)1046 static int bmc150_magn_suspend(struct device *dev)
1047 {
1048 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1049 struct bmc150_magn_data *data = iio_priv(indio_dev);
1050 int ret;
1051
1052 mutex_lock(&data->mutex);
1053 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1054 true);
1055 mutex_unlock(&data->mutex);
1056
1057 return ret;
1058 }
1059
bmc150_magn_resume(struct device * dev)1060 static int bmc150_magn_resume(struct device *dev)
1061 {
1062 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1063 struct bmc150_magn_data *data = iio_priv(indio_dev);
1064 int ret;
1065
1066 mutex_lock(&data->mutex);
1067 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1068 true);
1069 mutex_unlock(&data->mutex);
1070
1071 return ret;
1072 }
1073 #endif
1074
1075 const struct dev_pm_ops bmc150_magn_pm_ops = {
1076 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1077 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1078 bmc150_magn_runtime_resume, NULL)
1079 };
1080 EXPORT_SYMBOL(bmc150_magn_pm_ops);
1081
1082 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1083 MODULE_LICENSE("GPL v2");
1084 MODULE_DESCRIPTION("BMC150 magnetometer core driver");
1085