1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4  * Copyright (c) 2012 Bosch Sensortec GmbH
5  * Copyright (c) 2012 Unixphere AB
6  * Copyright (c) 2014 Intel Corporation
7  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8  *
9  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10  *
11  * Datasheet:
12  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
13  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
14  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
15  */
16 
17 #define pr_fmt(fmt) "bmp280: " fmt
18 
19 #include <linux/device.h>
20 #include <linux/module.h>
21 #include <linux/regmap.h>
22 #include <linux/delay.h>
23 #include <linux/iio/iio.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h> /* For irq_get_irq_data() */
29 #include <linux/completion.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/random.h>
32 
33 #include "bmp280.h"
34 
35 /*
36  * These enums are used for indexing into the array of calibration
37  * coefficients for BMP180.
38  */
39 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
40 
41 struct bmp180_calib {
42 	s16 AC1;
43 	s16 AC2;
44 	s16 AC3;
45 	u16 AC4;
46 	u16 AC5;
47 	u16 AC6;
48 	s16 B1;
49 	s16 B2;
50 	s16 MB;
51 	s16 MC;
52 	s16 MD;
53 };
54 
55 /* See datasheet Section 4.2.2. */
56 struct bmp280_calib {
57 	u16 T1;
58 	s16 T2;
59 	s16 T3;
60 	u16 P1;
61 	s16 P2;
62 	s16 P3;
63 	s16 P4;
64 	s16 P5;
65 	s16 P6;
66 	s16 P7;
67 	s16 P8;
68 	s16 P9;
69 	u8  H1;
70 	s16 H2;
71 	u8  H3;
72 	s16 H4;
73 	s16 H5;
74 	s8  H6;
75 };
76 
77 static const char *const bmp280_supply_names[] = {
78 	"vddd", "vdda"
79 };
80 
81 #define BMP280_NUM_SUPPLIES ARRAY_SIZE(bmp280_supply_names)
82 
83 struct bmp280_data {
84 	struct device *dev;
85 	struct mutex lock;
86 	struct regmap *regmap;
87 	struct completion done;
88 	bool use_eoc;
89 	const struct bmp280_chip_info *chip_info;
90 	union {
91 		struct bmp180_calib bmp180;
92 		struct bmp280_calib bmp280;
93 	} calib;
94 	struct regulator_bulk_data supplies[BMP280_NUM_SUPPLIES];
95 	unsigned int start_up_time; /* in microseconds */
96 
97 	/* log of base 2 of oversampling rate */
98 	u8 oversampling_press;
99 	u8 oversampling_temp;
100 	u8 oversampling_humid;
101 
102 	/*
103 	 * Carryover value from temperature conversion, used in pressure
104 	 * calculation.
105 	 */
106 	s32 t_fine;
107 };
108 
109 struct bmp280_chip_info {
110 	const int *oversampling_temp_avail;
111 	int num_oversampling_temp_avail;
112 
113 	const int *oversampling_press_avail;
114 	int num_oversampling_press_avail;
115 
116 	const int *oversampling_humid_avail;
117 	int num_oversampling_humid_avail;
118 
119 	int (*chip_config)(struct bmp280_data *);
120 	int (*read_temp)(struct bmp280_data *, int *);
121 	int (*read_press)(struct bmp280_data *, int *, int *);
122 	int (*read_humid)(struct bmp280_data *, int *, int *);
123 };
124 
125 /*
126  * These enums are used for indexing into the array of compensation
127  * parameters for BMP280.
128  */
129 enum { T1, T2, T3 };
130 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
131 
132 static const struct iio_chan_spec bmp280_channels[] = {
133 	{
134 		.type = IIO_PRESSURE,
135 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
136 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
137 	},
138 	{
139 		.type = IIO_TEMP,
140 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
141 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
142 	},
143 	{
144 		.type = IIO_HUMIDITYRELATIVE,
145 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
146 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
147 	},
148 };
149 
bmp280_read_calib(struct bmp280_data * data,struct bmp280_calib * calib,unsigned int chip)150 static int bmp280_read_calib(struct bmp280_data *data,
151 			     struct bmp280_calib *calib,
152 			     unsigned int chip)
153 {
154 	int ret;
155 	unsigned int tmp;
156 	__le16 l16;
157 	__be16 b16;
158 	struct device *dev = data->dev;
159 	__le16 t_buf[BMP280_COMP_TEMP_REG_COUNT / 2];
160 	__le16 p_buf[BMP280_COMP_PRESS_REG_COUNT / 2];
161 
162 	/* Read temperature calibration values. */
163 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
164 			       t_buf, BMP280_COMP_TEMP_REG_COUNT);
165 	if (ret < 0) {
166 		dev_err(data->dev,
167 			"failed to read temperature calibration parameters\n");
168 		return ret;
169 	}
170 
171 	/* Toss the temperature calibration data into the entropy pool */
172 	add_device_randomness(t_buf, sizeof(t_buf));
173 
174 	calib->T1 = le16_to_cpu(t_buf[T1]);
175 	calib->T2 = le16_to_cpu(t_buf[T2]);
176 	calib->T3 = le16_to_cpu(t_buf[T3]);
177 
178 	/* Read pressure calibration values. */
179 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
180 			       p_buf, BMP280_COMP_PRESS_REG_COUNT);
181 	if (ret < 0) {
182 		dev_err(data->dev,
183 			"failed to read pressure calibration parameters\n");
184 		return ret;
185 	}
186 
187 	/* Toss the pressure calibration data into the entropy pool */
188 	add_device_randomness(p_buf, sizeof(p_buf));
189 
190 	calib->P1 = le16_to_cpu(p_buf[P1]);
191 	calib->P2 = le16_to_cpu(p_buf[P2]);
192 	calib->P3 = le16_to_cpu(p_buf[P3]);
193 	calib->P4 = le16_to_cpu(p_buf[P4]);
194 	calib->P5 = le16_to_cpu(p_buf[P5]);
195 	calib->P6 = le16_to_cpu(p_buf[P6]);
196 	calib->P7 = le16_to_cpu(p_buf[P7]);
197 	calib->P8 = le16_to_cpu(p_buf[P8]);
198 	calib->P9 = le16_to_cpu(p_buf[P9]);
199 
200 	/*
201 	 * Read humidity calibration values.
202 	 * Due to some odd register addressing we cannot just
203 	 * do a big bulk read. Instead, we have to read each Hx
204 	 * value separately and sometimes do some bit shifting...
205 	 * Humidity data is only available on BME280.
206 	 */
207 	if (chip != BME280_CHIP_ID)
208 		return 0;
209 
210 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
211 	if (ret < 0) {
212 		dev_err(dev, "failed to read H1 comp value\n");
213 		return ret;
214 	}
215 	calib->H1 = tmp;
216 
217 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &l16, 2);
218 	if (ret < 0) {
219 		dev_err(dev, "failed to read H2 comp value\n");
220 		return ret;
221 	}
222 	calib->H2 = sign_extend32(le16_to_cpu(l16), 15);
223 
224 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
225 	if (ret < 0) {
226 		dev_err(dev, "failed to read H3 comp value\n");
227 		return ret;
228 	}
229 	calib->H3 = tmp;
230 
231 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &b16, 2);
232 	if (ret < 0) {
233 		dev_err(dev, "failed to read H4 comp value\n");
234 		return ret;
235 	}
236 	calib->H4 = sign_extend32(((be16_to_cpu(b16) >> 4) & 0xff0) |
237 				  (be16_to_cpu(b16) & 0xf), 11);
238 
239 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &l16, 2);
240 	if (ret < 0) {
241 		dev_err(dev, "failed to read H5 comp value\n");
242 		return ret;
243 	}
244 	calib->H5 = sign_extend32(((le16_to_cpu(l16) >> 4) & 0xfff), 11);
245 
246 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
247 	if (ret < 0) {
248 		dev_err(dev, "failed to read H6 comp value\n");
249 		return ret;
250 	}
251 	calib->H6 = sign_extend32(tmp, 7);
252 
253 	return 0;
254 }
255 /*
256  * Returns humidity in percent, resolution is 0.01 percent. Output value of
257  * "47445" represents 47445/1024 = 46.333 %RH.
258  *
259  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
260  */
bmp280_compensate_humidity(struct bmp280_data * data,s32 adc_humidity)261 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
262 				      s32 adc_humidity)
263 {
264 	s32 var;
265 	struct bmp280_calib *calib = &data->calib.bmp280;
266 
267 	var = ((s32)data->t_fine) - (s32)76800;
268 	var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
269 		+ (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
270 		* (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
271 		+ (s32)2097152) * calib->H2 + 8192) >> 14);
272 	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
273 
274 	var = clamp_val(var, 0, 419430400);
275 
276 	return var >> 12;
277 };
278 
279 /*
280  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
281  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
282  * value.
283  *
284  * Taken from datasheet, Section 3.11.3, "Compensation formula".
285  */
bmp280_compensate_temp(struct bmp280_data * data,s32 adc_temp)286 static s32 bmp280_compensate_temp(struct bmp280_data *data,
287 				  s32 adc_temp)
288 {
289 	s32 var1, var2;
290 	struct bmp280_calib *calib = &data->calib.bmp280;
291 
292 	var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
293 		((s32)calib->T2)) >> 11;
294 	var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
295 		  ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
296 		((s32)calib->T3)) >> 14;
297 	data->t_fine = var1 + var2;
298 
299 	return (data->t_fine * 5 + 128) >> 8;
300 }
301 
302 /*
303  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
304  * integer bits and 8 fractional bits).  Output value of "24674867"
305  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
306  *
307  * Taken from datasheet, Section 3.11.3, "Compensation formula".
308  */
bmp280_compensate_press(struct bmp280_data * data,s32 adc_press)309 static u32 bmp280_compensate_press(struct bmp280_data *data,
310 				   s32 adc_press)
311 {
312 	s64 var1, var2, p;
313 	struct bmp280_calib *calib = &data->calib.bmp280;
314 
315 	var1 = ((s64)data->t_fine) - 128000;
316 	var2 = var1 * var1 * (s64)calib->P6;
317 	var2 += (var1 * (s64)calib->P5) << 17;
318 	var2 += ((s64)calib->P4) << 35;
319 	var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
320 		((var1 * (s64)calib->P2) << 12);
321 	var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
322 
323 	if (var1 == 0)
324 		return 0;
325 
326 	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
327 	p = div64_s64(p, var1);
328 	var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
329 	var2 = ((s64)(calib->P8) * p) >> 19;
330 	p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
331 
332 	return (u32)p;
333 }
334 
bmp280_read_temp(struct bmp280_data * data,int * val)335 static int bmp280_read_temp(struct bmp280_data *data,
336 			    int *val)
337 {
338 	int ret;
339 	__be32 tmp = 0;
340 	s32 adc_temp, comp_temp;
341 
342 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, &tmp, 3);
343 	if (ret < 0) {
344 		dev_err(data->dev, "failed to read temperature\n");
345 		return ret;
346 	}
347 
348 	adc_temp = be32_to_cpu(tmp) >> 12;
349 	if (adc_temp == BMP280_TEMP_SKIPPED) {
350 		/* reading was skipped */
351 		dev_err(data->dev, "reading temperature skipped\n");
352 		return -EIO;
353 	}
354 	comp_temp = bmp280_compensate_temp(data, adc_temp);
355 
356 	/*
357 	 * val might be NULL if we're called by the read_press routine,
358 	 * who only cares about the carry over t_fine value.
359 	 */
360 	if (val) {
361 		*val = comp_temp * 10;
362 		return IIO_VAL_INT;
363 	}
364 
365 	return 0;
366 }
367 
bmp280_read_press(struct bmp280_data * data,int * val,int * val2)368 static int bmp280_read_press(struct bmp280_data *data,
369 			     int *val, int *val2)
370 {
371 	int ret;
372 	__be32 tmp = 0;
373 	s32 adc_press;
374 	u32 comp_press;
375 
376 	/* Read and compensate temperature so we get a reading of t_fine. */
377 	ret = bmp280_read_temp(data, NULL);
378 	if (ret < 0)
379 		return ret;
380 
381 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, &tmp, 3);
382 	if (ret < 0) {
383 		dev_err(data->dev, "failed to read pressure\n");
384 		return ret;
385 	}
386 
387 	adc_press = be32_to_cpu(tmp) >> 12;
388 	if (adc_press == BMP280_PRESS_SKIPPED) {
389 		/* reading was skipped */
390 		dev_err(data->dev, "reading pressure skipped\n");
391 		return -EIO;
392 	}
393 	comp_press = bmp280_compensate_press(data, adc_press);
394 
395 	*val = comp_press;
396 	*val2 = 256000;
397 
398 	return IIO_VAL_FRACTIONAL;
399 }
400 
bmp280_read_humid(struct bmp280_data * data,int * val,int * val2)401 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
402 {
403 	__be16 tmp;
404 	int ret;
405 	s32 adc_humidity;
406 	u32 comp_humidity;
407 
408 	/* Read and compensate temperature so we get a reading of t_fine. */
409 	ret = bmp280_read_temp(data, NULL);
410 	if (ret < 0)
411 		return ret;
412 
413 	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB, &tmp, 2);
414 	if (ret < 0) {
415 		dev_err(data->dev, "failed to read humidity\n");
416 		return ret;
417 	}
418 
419 	adc_humidity = be16_to_cpu(tmp);
420 	if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
421 		/* reading was skipped */
422 		dev_err(data->dev, "reading humidity skipped\n");
423 		return -EIO;
424 	}
425 	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
426 
427 	*val = comp_humidity * 1000 / 1024;
428 
429 	return IIO_VAL_INT;
430 }
431 
bmp280_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)432 static int bmp280_read_raw(struct iio_dev *indio_dev,
433 			   struct iio_chan_spec const *chan,
434 			   int *val, int *val2, long mask)
435 {
436 	int ret;
437 	struct bmp280_data *data = iio_priv(indio_dev);
438 
439 	pm_runtime_get_sync(data->dev);
440 	mutex_lock(&data->lock);
441 
442 	switch (mask) {
443 	case IIO_CHAN_INFO_PROCESSED:
444 		switch (chan->type) {
445 		case IIO_HUMIDITYRELATIVE:
446 			ret = data->chip_info->read_humid(data, val, val2);
447 			break;
448 		case IIO_PRESSURE:
449 			ret = data->chip_info->read_press(data, val, val2);
450 			break;
451 		case IIO_TEMP:
452 			ret = data->chip_info->read_temp(data, val);
453 			break;
454 		default:
455 			ret = -EINVAL;
456 			break;
457 		}
458 		break;
459 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
460 		switch (chan->type) {
461 		case IIO_HUMIDITYRELATIVE:
462 			*val = 1 << data->oversampling_humid;
463 			ret = IIO_VAL_INT;
464 			break;
465 		case IIO_PRESSURE:
466 			*val = 1 << data->oversampling_press;
467 			ret = IIO_VAL_INT;
468 			break;
469 		case IIO_TEMP:
470 			*val = 1 << data->oversampling_temp;
471 			ret = IIO_VAL_INT;
472 			break;
473 		default:
474 			ret = -EINVAL;
475 			break;
476 		}
477 		break;
478 	default:
479 		ret = -EINVAL;
480 		break;
481 	}
482 
483 	mutex_unlock(&data->lock);
484 	pm_runtime_mark_last_busy(data->dev);
485 	pm_runtime_put_autosuspend(data->dev);
486 
487 	return ret;
488 }
489 
bmp280_write_oversampling_ratio_humid(struct bmp280_data * data,int val)490 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
491 					       int val)
492 {
493 	int i;
494 	const int *avail = data->chip_info->oversampling_humid_avail;
495 	const int n = data->chip_info->num_oversampling_humid_avail;
496 
497 	for (i = 0; i < n; i++) {
498 		if (avail[i] == val) {
499 			data->oversampling_humid = ilog2(val);
500 
501 			return data->chip_info->chip_config(data);
502 		}
503 	}
504 	return -EINVAL;
505 }
506 
bmp280_write_oversampling_ratio_temp(struct bmp280_data * data,int val)507 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
508 					       int val)
509 {
510 	int i;
511 	const int *avail = data->chip_info->oversampling_temp_avail;
512 	const int n = data->chip_info->num_oversampling_temp_avail;
513 
514 	for (i = 0; i < n; i++) {
515 		if (avail[i] == val) {
516 			data->oversampling_temp = ilog2(val);
517 
518 			return data->chip_info->chip_config(data);
519 		}
520 	}
521 	return -EINVAL;
522 }
523 
bmp280_write_oversampling_ratio_press(struct bmp280_data * data,int val)524 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
525 					       int val)
526 {
527 	int i;
528 	const int *avail = data->chip_info->oversampling_press_avail;
529 	const int n = data->chip_info->num_oversampling_press_avail;
530 
531 	for (i = 0; i < n; i++) {
532 		if (avail[i] == val) {
533 			data->oversampling_press = ilog2(val);
534 
535 			return data->chip_info->chip_config(data);
536 		}
537 	}
538 	return -EINVAL;
539 }
540 
bmp280_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)541 static int bmp280_write_raw(struct iio_dev *indio_dev,
542 			    struct iio_chan_spec const *chan,
543 			    int val, int val2, long mask)
544 {
545 	int ret = 0;
546 	struct bmp280_data *data = iio_priv(indio_dev);
547 
548 	switch (mask) {
549 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
550 		pm_runtime_get_sync(data->dev);
551 		mutex_lock(&data->lock);
552 		switch (chan->type) {
553 		case IIO_HUMIDITYRELATIVE:
554 			ret = bmp280_write_oversampling_ratio_humid(data, val);
555 			break;
556 		case IIO_PRESSURE:
557 			ret = bmp280_write_oversampling_ratio_press(data, val);
558 			break;
559 		case IIO_TEMP:
560 			ret = bmp280_write_oversampling_ratio_temp(data, val);
561 			break;
562 		default:
563 			ret = -EINVAL;
564 			break;
565 		}
566 		mutex_unlock(&data->lock);
567 		pm_runtime_mark_last_busy(data->dev);
568 		pm_runtime_put_autosuspend(data->dev);
569 		break;
570 	default:
571 		return -EINVAL;
572 	}
573 
574 	return ret;
575 }
576 
bmp280_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)577 static int bmp280_read_avail(struct iio_dev *indio_dev,
578 			     struct iio_chan_spec const *chan,
579 			     const int **vals, int *type, int *length,
580 			     long mask)
581 {
582 	struct bmp280_data *data = iio_priv(indio_dev);
583 
584 	switch (mask) {
585 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
586 		switch (chan->type) {
587 		case IIO_PRESSURE:
588 			*vals = data->chip_info->oversampling_press_avail;
589 			*length = data->chip_info->num_oversampling_press_avail;
590 			break;
591 		case IIO_TEMP:
592 			*vals = data->chip_info->oversampling_temp_avail;
593 			*length = data->chip_info->num_oversampling_temp_avail;
594 			break;
595 		default:
596 			return -EINVAL;
597 		}
598 		*type = IIO_VAL_INT;
599 		return IIO_AVAIL_LIST;
600 	default:
601 		return -EINVAL;
602 	}
603 }
604 
605 static const struct iio_info bmp280_info = {
606 	.read_raw = &bmp280_read_raw,
607 	.read_avail = &bmp280_read_avail,
608 	.write_raw = &bmp280_write_raw,
609 };
610 
bmp280_chip_config(struct bmp280_data * data)611 static int bmp280_chip_config(struct bmp280_data *data)
612 {
613 	int ret;
614 	u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
615 		  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
616 
617 	ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
618 				 BMP280_OSRS_TEMP_MASK |
619 				 BMP280_OSRS_PRESS_MASK |
620 				 BMP280_MODE_MASK,
621 				 osrs | BMP280_MODE_NORMAL);
622 	if (ret < 0) {
623 		dev_err(data->dev,
624 			"failed to write ctrl_meas register\n");
625 		return ret;
626 	}
627 
628 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
629 				 BMP280_FILTER_MASK,
630 				 BMP280_FILTER_4X);
631 	if (ret < 0) {
632 		dev_err(data->dev,
633 			"failed to write config register\n");
634 		return ret;
635 	}
636 
637 	return ret;
638 }
639 
640 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
641 
642 static const struct bmp280_chip_info bmp280_chip_info = {
643 	.oversampling_temp_avail = bmp280_oversampling_avail,
644 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
645 
646 	.oversampling_press_avail = bmp280_oversampling_avail,
647 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
648 
649 	.chip_config = bmp280_chip_config,
650 	.read_temp = bmp280_read_temp,
651 	.read_press = bmp280_read_press,
652 };
653 
bme280_chip_config(struct bmp280_data * data)654 static int bme280_chip_config(struct bmp280_data *data)
655 {
656 	int ret;
657 	u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
658 
659 	/*
660 	 * Oversampling of humidity must be set before oversampling of
661 	 * temperature/pressure is set to become effective.
662 	 */
663 	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
664 				  BMP280_OSRS_HUMIDITY_MASK, osrs);
665 
666 	if (ret < 0)
667 		return ret;
668 
669 	return bmp280_chip_config(data);
670 }
671 
672 static const struct bmp280_chip_info bme280_chip_info = {
673 	.oversampling_temp_avail = bmp280_oversampling_avail,
674 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
675 
676 	.oversampling_press_avail = bmp280_oversampling_avail,
677 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
678 
679 	.oversampling_humid_avail = bmp280_oversampling_avail,
680 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
681 
682 	.chip_config = bme280_chip_config,
683 	.read_temp = bmp280_read_temp,
684 	.read_press = bmp280_read_press,
685 	.read_humid = bmp280_read_humid,
686 };
687 
bmp180_measure(struct bmp280_data * data,u8 ctrl_meas)688 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
689 {
690 	int ret;
691 	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
692 	unsigned int delay_us;
693 	unsigned int ctrl;
694 
695 	if (data->use_eoc)
696 		reinit_completion(&data->done);
697 
698 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
699 	if (ret)
700 		return ret;
701 
702 	if (data->use_eoc) {
703 		/*
704 		 * If we have a completion interrupt, use it, wait up to
705 		 * 100ms. The longest conversion time listed is 76.5 ms for
706 		 * advanced resolution mode.
707 		 */
708 		ret = wait_for_completion_timeout(&data->done,
709 						  1 + msecs_to_jiffies(100));
710 		if (!ret)
711 			dev_err(data->dev, "timeout waiting for completion\n");
712 	} else {
713 		if (ctrl_meas == BMP180_MEAS_TEMP)
714 			delay_us = 4500;
715 		else
716 			delay_us =
717 				conversion_time_max[data->oversampling_press];
718 
719 		usleep_range(delay_us, delay_us + 1000);
720 	}
721 
722 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
723 	if (ret)
724 		return ret;
725 
726 	/* The value of this bit reset to "0" after conversion is complete */
727 	if (ctrl & BMP180_MEAS_SCO)
728 		return -EIO;
729 
730 	return 0;
731 }
732 
bmp180_read_adc_temp(struct bmp280_data * data,int * val)733 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
734 {
735 	__be16 tmp;
736 	int ret;
737 
738 	ret = bmp180_measure(data, BMP180_MEAS_TEMP);
739 	if (ret)
740 		return ret;
741 
742 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, &tmp, 2);
743 	if (ret)
744 		return ret;
745 
746 	*val = be16_to_cpu(tmp);
747 
748 	return 0;
749 }
750 
bmp180_read_calib(struct bmp280_data * data,struct bmp180_calib * calib)751 static int bmp180_read_calib(struct bmp280_data *data,
752 			     struct bmp180_calib *calib)
753 {
754 	int ret;
755 	int i;
756 	__be16 buf[BMP180_REG_CALIB_COUNT / 2];
757 
758 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
759 			       sizeof(buf));
760 
761 	if (ret < 0)
762 		return ret;
763 
764 	/* None of the words has the value 0 or 0xFFFF */
765 	for (i = 0; i < ARRAY_SIZE(buf); i++) {
766 		if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
767 			return -EIO;
768 	}
769 
770 	/* Toss the calibration data into the entropy pool */
771 	add_device_randomness(buf, sizeof(buf));
772 
773 	calib->AC1 = be16_to_cpu(buf[AC1]);
774 	calib->AC2 = be16_to_cpu(buf[AC2]);
775 	calib->AC3 = be16_to_cpu(buf[AC3]);
776 	calib->AC4 = be16_to_cpu(buf[AC4]);
777 	calib->AC5 = be16_to_cpu(buf[AC5]);
778 	calib->AC6 = be16_to_cpu(buf[AC6]);
779 	calib->B1 = be16_to_cpu(buf[B1]);
780 	calib->B2 = be16_to_cpu(buf[B2]);
781 	calib->MB = be16_to_cpu(buf[MB]);
782 	calib->MC = be16_to_cpu(buf[MC]);
783 	calib->MD = be16_to_cpu(buf[MD]);
784 
785 	return 0;
786 }
787 
788 /*
789  * Returns temperature in DegC, resolution is 0.1 DegC.
790  * t_fine carries fine temperature as global value.
791  *
792  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
793  */
bmp180_compensate_temp(struct bmp280_data * data,s32 adc_temp)794 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
795 {
796 	s32 x1, x2;
797 	struct bmp180_calib *calib = &data->calib.bmp180;
798 
799 	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
800 	x2 = (calib->MC << 11) / (x1 + calib->MD);
801 	data->t_fine = x1 + x2;
802 
803 	return (data->t_fine + 8) >> 4;
804 }
805 
bmp180_read_temp(struct bmp280_data * data,int * val)806 static int bmp180_read_temp(struct bmp280_data *data, int *val)
807 {
808 	int ret;
809 	s32 adc_temp, comp_temp;
810 
811 	ret = bmp180_read_adc_temp(data, &adc_temp);
812 	if (ret)
813 		return ret;
814 
815 	comp_temp = bmp180_compensate_temp(data, adc_temp);
816 
817 	/*
818 	 * val might be NULL if we're called by the read_press routine,
819 	 * who only cares about the carry over t_fine value.
820 	 */
821 	if (val) {
822 		*val = comp_temp * 100;
823 		return IIO_VAL_INT;
824 	}
825 
826 	return 0;
827 }
828 
bmp180_read_adc_press(struct bmp280_data * data,int * val)829 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
830 {
831 	int ret;
832 	__be32 tmp = 0;
833 	u8 oss = data->oversampling_press;
834 
835 	ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
836 	if (ret)
837 		return ret;
838 
839 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, &tmp, 3);
840 	if (ret)
841 		return ret;
842 
843 	*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
844 
845 	return 0;
846 }
847 
848 /*
849  * Returns pressure in Pa, resolution is 1 Pa.
850  *
851  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
852  */
bmp180_compensate_press(struct bmp280_data * data,s32 adc_press)853 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
854 {
855 	s32 x1, x2, x3, p;
856 	s32 b3, b6;
857 	u32 b4, b7;
858 	s32 oss = data->oversampling_press;
859 	struct bmp180_calib *calib = &data->calib.bmp180;
860 
861 	b6 = data->t_fine - 4000;
862 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
863 	x2 = calib->AC2 * b6 >> 11;
864 	x3 = x1 + x2;
865 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
866 	x1 = calib->AC3 * b6 >> 13;
867 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
868 	x3 = (x1 + x2 + 2) >> 2;
869 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
870 	b7 = ((u32)adc_press - b3) * (50000 >> oss);
871 	if (b7 < 0x80000000)
872 		p = (b7 * 2) / b4;
873 	else
874 		p = (b7 / b4) * 2;
875 
876 	x1 = (p >> 8) * (p >> 8);
877 	x1 = (x1 * 3038) >> 16;
878 	x2 = (-7357 * p) >> 16;
879 
880 	return p + ((x1 + x2 + 3791) >> 4);
881 }
882 
bmp180_read_press(struct bmp280_data * data,int * val,int * val2)883 static int bmp180_read_press(struct bmp280_data *data,
884 			     int *val, int *val2)
885 {
886 	int ret;
887 	s32 adc_press;
888 	u32 comp_press;
889 
890 	/* Read and compensate temperature so we get a reading of t_fine. */
891 	ret = bmp180_read_temp(data, NULL);
892 	if (ret)
893 		return ret;
894 
895 	ret = bmp180_read_adc_press(data, &adc_press);
896 	if (ret)
897 		return ret;
898 
899 	comp_press = bmp180_compensate_press(data, adc_press);
900 
901 	*val = comp_press;
902 	*val2 = 1000;
903 
904 	return IIO_VAL_FRACTIONAL;
905 }
906 
bmp180_chip_config(struct bmp280_data * data)907 static int bmp180_chip_config(struct bmp280_data *data)
908 {
909 	return 0;
910 }
911 
912 static const int bmp180_oversampling_temp_avail[] = { 1 };
913 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
914 
915 static const struct bmp280_chip_info bmp180_chip_info = {
916 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
917 	.num_oversampling_temp_avail =
918 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
919 
920 	.oversampling_press_avail = bmp180_oversampling_press_avail,
921 	.num_oversampling_press_avail =
922 		ARRAY_SIZE(bmp180_oversampling_press_avail),
923 
924 	.chip_config = bmp180_chip_config,
925 	.read_temp = bmp180_read_temp,
926 	.read_press = bmp180_read_press,
927 };
928 
bmp085_eoc_irq(int irq,void * d)929 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
930 {
931 	struct bmp280_data *data = d;
932 
933 	complete(&data->done);
934 
935 	return IRQ_HANDLED;
936 }
937 
bmp085_fetch_eoc_irq(struct device * dev,const char * name,int irq,struct bmp280_data * data)938 static int bmp085_fetch_eoc_irq(struct device *dev,
939 				const char *name,
940 				int irq,
941 				struct bmp280_data *data)
942 {
943 	unsigned long irq_trig;
944 	int ret;
945 
946 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
947 	if (irq_trig != IRQF_TRIGGER_RISING) {
948 		dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
949 		irq_trig = IRQF_TRIGGER_RISING;
950 	}
951 
952 	init_completion(&data->done);
953 
954 	ret = devm_request_threaded_irq(dev,
955 			irq,
956 			bmp085_eoc_irq,
957 			NULL,
958 			irq_trig,
959 			name,
960 			data);
961 	if (ret) {
962 		/* Bail out without IRQ but keep the driver in place */
963 		dev_err(dev, "unable to request DRDY IRQ\n");
964 		return 0;
965 	}
966 
967 	data->use_eoc = true;
968 	return 0;
969 }
970 
bmp280_pm_disable(void * data)971 static void bmp280_pm_disable(void *data)
972 {
973 	struct device *dev = data;
974 
975 	pm_runtime_get_sync(dev);
976 	pm_runtime_put_noidle(dev);
977 	pm_runtime_disable(dev);
978 }
979 
bmp280_regulators_disable(void * data)980 static void bmp280_regulators_disable(void *data)
981 {
982 	struct regulator_bulk_data *supplies = data;
983 
984 	regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
985 }
986 
bmp280_common_probe(struct device * dev,struct regmap * regmap,unsigned int chip,const char * name,int irq)987 int bmp280_common_probe(struct device *dev,
988 			struct regmap *regmap,
989 			unsigned int chip,
990 			const char *name,
991 			int irq)
992 {
993 	int ret;
994 	struct iio_dev *indio_dev;
995 	struct bmp280_data *data;
996 	unsigned int chip_id;
997 	struct gpio_desc *gpiod;
998 
999 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1000 	if (!indio_dev)
1001 		return -ENOMEM;
1002 
1003 	data = iio_priv(indio_dev);
1004 	mutex_init(&data->lock);
1005 	data->dev = dev;
1006 
1007 	indio_dev->name = name;
1008 	indio_dev->channels = bmp280_channels;
1009 	indio_dev->info = &bmp280_info;
1010 	indio_dev->modes = INDIO_DIRECT_MODE;
1011 
1012 	switch (chip) {
1013 	case BMP180_CHIP_ID:
1014 		indio_dev->num_channels = 2;
1015 		data->chip_info = &bmp180_chip_info;
1016 		data->oversampling_press = ilog2(8);
1017 		data->oversampling_temp = ilog2(1);
1018 		data->start_up_time = 10000;
1019 		break;
1020 	case BMP280_CHIP_ID:
1021 		indio_dev->num_channels = 2;
1022 		data->chip_info = &bmp280_chip_info;
1023 		data->oversampling_press = ilog2(16);
1024 		data->oversampling_temp = ilog2(2);
1025 		data->start_up_time = 2000;
1026 		break;
1027 	case BME280_CHIP_ID:
1028 		indio_dev->num_channels = 3;
1029 		data->chip_info = &bme280_chip_info;
1030 		data->oversampling_press = ilog2(16);
1031 		data->oversampling_humid = ilog2(16);
1032 		data->oversampling_temp = ilog2(2);
1033 		data->start_up_time = 2000;
1034 		break;
1035 	default:
1036 		return -EINVAL;
1037 	}
1038 
1039 	/* Bring up regulators */
1040 	regulator_bulk_set_supply_names(data->supplies,
1041 					bmp280_supply_names,
1042 					BMP280_NUM_SUPPLIES);
1043 
1044 	ret = devm_regulator_bulk_get(dev,
1045 				      BMP280_NUM_SUPPLIES, data->supplies);
1046 	if (ret) {
1047 		dev_err(dev, "failed to get regulators\n");
1048 		return ret;
1049 	}
1050 
1051 	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
1052 	if (ret) {
1053 		dev_err(dev, "failed to enable regulators\n");
1054 		return ret;
1055 	}
1056 
1057 	ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
1058 				       data->supplies);
1059 	if (ret)
1060 		return ret;
1061 
1062 	/* Wait to make sure we started up properly */
1063 	usleep_range(data->start_up_time, data->start_up_time + 100);
1064 
1065 	/* Bring chip out of reset if there is an assigned GPIO line */
1066 	gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1067 	/* Deassert the signal */
1068 	if (gpiod) {
1069 		dev_info(dev, "release reset\n");
1070 		gpiod_set_value(gpiod, 0);
1071 	}
1072 
1073 	data->regmap = regmap;
1074 	ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1075 	if (ret < 0)
1076 		return ret;
1077 	if (chip_id != chip) {
1078 		dev_err(dev, "bad chip id: expected %x got %x\n",
1079 			chip, chip_id);
1080 		return -EINVAL;
1081 	}
1082 
1083 	ret = data->chip_info->chip_config(data);
1084 	if (ret < 0)
1085 		return ret;
1086 
1087 	dev_set_drvdata(dev, indio_dev);
1088 
1089 	/*
1090 	 * Some chips have calibration parameters "programmed into the devices'
1091 	 * non-volatile memory during production". Let's read them out at probe
1092 	 * time once. They will not change.
1093 	 */
1094 	if (chip_id  == BMP180_CHIP_ID) {
1095 		ret = bmp180_read_calib(data, &data->calib.bmp180);
1096 		if (ret < 0) {
1097 			dev_err(data->dev,
1098 				"failed to read calibration coefficients\n");
1099 			return ret;
1100 		}
1101 	} else if (chip_id == BMP280_CHIP_ID || chip_id == BME280_CHIP_ID) {
1102 		ret = bmp280_read_calib(data, &data->calib.bmp280, chip_id);
1103 		if (ret < 0) {
1104 			dev_err(data->dev,
1105 				"failed to read calibration coefficients\n");
1106 			return ret;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1112 	 * however as it happens, the BMP085 shares the chip ID of BMP180
1113 	 * so we look for an IRQ if we have that.
1114 	 */
1115 	if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1116 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1117 		if (ret)
1118 			return ret;
1119 	}
1120 
1121 	/* Enable runtime PM */
1122 	pm_runtime_get_noresume(dev);
1123 	pm_runtime_set_active(dev);
1124 	pm_runtime_enable(dev);
1125 	/*
1126 	 * Set autosuspend to two orders of magnitude larger than the
1127 	 * start-up time.
1128 	 */
1129 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1130 	pm_runtime_use_autosuspend(dev);
1131 	pm_runtime_put(dev);
1132 
1133 	ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
1134 	if (ret)
1135 		return ret;
1136 
1137 	return devm_iio_device_register(dev, indio_dev);
1138 }
1139 EXPORT_SYMBOL(bmp280_common_probe);
1140 
1141 #ifdef CONFIG_PM
bmp280_runtime_suspend(struct device * dev)1142 static int bmp280_runtime_suspend(struct device *dev)
1143 {
1144 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1145 	struct bmp280_data *data = iio_priv(indio_dev);
1146 
1147 	return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
1148 }
1149 
bmp280_runtime_resume(struct device * dev)1150 static int bmp280_runtime_resume(struct device *dev)
1151 {
1152 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1153 	struct bmp280_data *data = iio_priv(indio_dev);
1154 	int ret;
1155 
1156 	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
1157 	if (ret)
1158 		return ret;
1159 	usleep_range(data->start_up_time, data->start_up_time + 100);
1160 	return data->chip_info->chip_config(data);
1161 }
1162 #endif /* CONFIG_PM */
1163 
1164 const struct dev_pm_ops bmp280_dev_pm_ops = {
1165 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1166 				pm_runtime_force_resume)
1167 	SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1168 			   bmp280_runtime_resume, NULL)
1169 };
1170 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1171 
1172 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1173 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1174 MODULE_LICENSE("GPL v2");
1175