1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/delay.h>
5
6 #include "igc_hw.h"
7
8 /**
9 * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
10 * @hw: pointer to the HW structure
11 *
12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14 * Return successful if access grant bit set, else clear the request for
15 * EEPROM access and return -IGC_ERR_NVM (-1).
16 */
igc_acquire_nvm_i225(struct igc_hw * hw)17 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18 {
19 return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20 }
21
22 /**
23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
24 * @hw: pointer to the HW structure
25 *
26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27 * then release the semaphores acquired.
28 */
igc_release_nvm_i225(struct igc_hw * hw)29 static void igc_release_nvm_i225(struct igc_hw *hw)
30 {
31 igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32 }
33
34 /**
35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36 * @hw: pointer to the HW structure
37 *
38 * Acquire the HW semaphore to access the PHY or NVM
39 */
igc_get_hw_semaphore_i225(struct igc_hw * hw)40 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
41 {
42 s32 timeout = hw->nvm.word_size + 1;
43 s32 i = 0;
44 u32 swsm;
45
46 /* Get the SW semaphore */
47 while (i < timeout) {
48 swsm = rd32(IGC_SWSM);
49 if (!(swsm & IGC_SWSM_SMBI))
50 break;
51
52 usleep_range(500, 600);
53 i++;
54 }
55
56 if (i == timeout) {
57 /* In rare circumstances, the SW semaphore may already be held
58 * unintentionally. Clear the semaphore once before giving up.
59 */
60 if (hw->dev_spec._base.clear_semaphore_once) {
61 hw->dev_spec._base.clear_semaphore_once = false;
62 igc_put_hw_semaphore(hw);
63 for (i = 0; i < timeout; i++) {
64 swsm = rd32(IGC_SWSM);
65 if (!(swsm & IGC_SWSM_SMBI))
66 break;
67
68 usleep_range(500, 600);
69 }
70 }
71
72 /* If we do not have the semaphore here, we have to give up. */
73 if (i == timeout) {
74 hw_dbg("Driver can't access device - SMBI bit is set.\n");
75 return -IGC_ERR_NVM;
76 }
77 }
78
79 /* Get the FW semaphore. */
80 for (i = 0; i < timeout; i++) {
81 swsm = rd32(IGC_SWSM);
82 wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
83
84 /* Semaphore acquired if bit latched */
85 if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
86 break;
87
88 usleep_range(500, 600);
89 }
90
91 if (i == timeout) {
92 /* Release semaphores */
93 igc_put_hw_semaphore(hw);
94 hw_dbg("Driver can't access the NVM\n");
95 return -IGC_ERR_NVM;
96 }
97
98 return 0;
99 }
100
101 /**
102 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103 * @hw: pointer to the HW structure
104 * @mask: specifies which semaphore to acquire
105 *
106 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
107 * will also specify which port we're acquiring the lock for.
108 */
igc_acquire_swfw_sync_i225(struct igc_hw * hw,u16 mask)109 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110 {
111 s32 i = 0, timeout = 200;
112 u32 fwmask = mask << 16;
113 u32 swmask = mask;
114 s32 ret_val = 0;
115 u32 swfw_sync;
116
117 while (i < timeout) {
118 if (igc_get_hw_semaphore_i225(hw)) {
119 ret_val = -IGC_ERR_SWFW_SYNC;
120 goto out;
121 }
122
123 swfw_sync = rd32(IGC_SW_FW_SYNC);
124 if (!(swfw_sync & (fwmask | swmask)))
125 break;
126
127 /* Firmware currently using resource (fwmask) */
128 igc_put_hw_semaphore(hw);
129 mdelay(5);
130 i++;
131 }
132
133 if (i == timeout) {
134 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135 ret_val = -IGC_ERR_SWFW_SYNC;
136 goto out;
137 }
138
139 swfw_sync |= swmask;
140 wr32(IGC_SW_FW_SYNC, swfw_sync);
141
142 igc_put_hw_semaphore(hw);
143 out:
144 return ret_val;
145 }
146
147 /**
148 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149 * @hw: pointer to the HW structure
150 * @mask: specifies which semaphore to acquire
151 *
152 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
153 * will also specify which port we're releasing the lock for.
154 */
igc_release_swfw_sync_i225(struct igc_hw * hw,u16 mask)155 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156 {
157 u32 swfw_sync;
158
159 while (igc_get_hw_semaphore_i225(hw))
160 ; /* Empty */
161
162 swfw_sync = rd32(IGC_SW_FW_SYNC);
163 swfw_sync &= ~mask;
164 wr32(IGC_SW_FW_SYNC, swfw_sync);
165
166 igc_put_hw_semaphore(hw);
167 }
168
169 /**
170 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
171 * @hw: pointer to the HW structure
172 * @offset: offset of word in the Shadow Ram to read
173 * @words: number of words to read
174 * @data: word read from the Shadow Ram
175 *
176 * Reads a 16 bit word from the Shadow Ram using the EERD register.
177 * Uses necessary synchronization semaphores.
178 */
igc_read_nvm_srrd_i225(struct igc_hw * hw,u16 offset,u16 words,u16 * data)179 static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
180 u16 *data)
181 {
182 s32 status = 0;
183 u16 i, count;
184
185 /* We cannot hold synchronization semaphores for too long,
186 * because of forceful takeover procedure. However it is more efficient
187 * to read in bursts than synchronizing access for each word.
188 */
189 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
190 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
191 IGC_EERD_EEWR_MAX_COUNT : (words - i);
192
193 status = hw->nvm.ops.acquire(hw);
194 if (status)
195 break;
196
197 status = igc_read_nvm_eerd(hw, offset, count, data + i);
198 hw->nvm.ops.release(hw);
199 if (status)
200 break;
201 }
202
203 return status;
204 }
205
206 /**
207 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
208 * @hw: pointer to the HW structure
209 * @offset: offset within the Shadow Ram to be written to
210 * @words: number of words to write
211 * @data: 16 bit word(s) to be written to the Shadow Ram
212 *
213 * Writes data to Shadow Ram at offset using EEWR register.
214 *
215 * If igc_update_nvm_checksum is not called after this function , the
216 * Shadow Ram will most likely contain an invalid checksum.
217 */
igc_write_nvm_srwr(struct igc_hw * hw,u16 offset,u16 words,u16 * data)218 static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
219 u16 *data)
220 {
221 struct igc_nvm_info *nvm = &hw->nvm;
222 s32 ret_val = -IGC_ERR_NVM;
223 u32 attempts = 100000;
224 u32 i, k, eewr = 0;
225
226 /* A check for invalid values: offset too large, too many words,
227 * too many words for the offset, and not enough words.
228 */
229 if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
230 words == 0) {
231 hw_dbg("nvm parameter(s) out of bounds\n");
232 return ret_val;
233 }
234
235 for (i = 0; i < words; i++) {
236 ret_val = -IGC_ERR_NVM;
237 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
238 (data[i] << IGC_NVM_RW_REG_DATA) |
239 IGC_NVM_RW_REG_START;
240
241 wr32(IGC_SRWR, eewr);
242
243 for (k = 0; k < attempts; k++) {
244 if (IGC_NVM_RW_REG_DONE &
245 rd32(IGC_SRWR)) {
246 ret_val = 0;
247 break;
248 }
249 udelay(5);
250 }
251
252 if (ret_val) {
253 hw_dbg("Shadow RAM write EEWR timed out\n");
254 break;
255 }
256 }
257
258 return ret_val;
259 }
260
261 /**
262 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
263 * @hw: pointer to the HW structure
264 * @offset: offset within the Shadow RAM to be written to
265 * @words: number of words to write
266 * @data: 16 bit word(s) to be written to the Shadow RAM
267 *
268 * Writes data to Shadow RAM at offset using EEWR register.
269 *
270 * If igc_update_nvm_checksum is not called after this function , the
271 * data will not be committed to FLASH and also Shadow RAM will most likely
272 * contain an invalid checksum.
273 *
274 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
275 * partially written.
276 */
igc_write_nvm_srwr_i225(struct igc_hw * hw,u16 offset,u16 words,u16 * data)277 static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
278 u16 *data)
279 {
280 s32 status = 0;
281 u16 i, count;
282
283 /* We cannot hold synchronization semaphores for too long,
284 * because of forceful takeover procedure. However it is more efficient
285 * to write in bursts than synchronizing access for each word.
286 */
287 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
288 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
289 IGC_EERD_EEWR_MAX_COUNT : (words - i);
290
291 status = hw->nvm.ops.acquire(hw);
292 if (status)
293 break;
294
295 status = igc_write_nvm_srwr(hw, offset, count, data + i);
296 hw->nvm.ops.release(hw);
297 if (status)
298 break;
299 }
300
301 return status;
302 }
303
304 /**
305 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
306 * @hw: pointer to the HW structure
307 *
308 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
309 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
310 */
igc_validate_nvm_checksum_i225(struct igc_hw * hw)311 static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
312 {
313 s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
314 u16 *data);
315 s32 status = 0;
316
317 status = hw->nvm.ops.acquire(hw);
318 if (status)
319 goto out;
320
321 /* Replace the read function with semaphore grabbing with
322 * the one that skips this for a while.
323 * We have semaphore taken already here.
324 */
325 read_op_ptr = hw->nvm.ops.read;
326 hw->nvm.ops.read = igc_read_nvm_eerd;
327
328 status = igc_validate_nvm_checksum(hw);
329
330 /* Revert original read operation. */
331 hw->nvm.ops.read = read_op_ptr;
332
333 hw->nvm.ops.release(hw);
334
335 out:
336 return status;
337 }
338
339 /**
340 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
341 * @hw: pointer to the HW structure
342 */
igc_pool_flash_update_done_i225(struct igc_hw * hw)343 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
344 {
345 s32 ret_val = -IGC_ERR_NVM;
346 u32 i, reg;
347
348 for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
349 reg = rd32(IGC_EECD);
350 if (reg & IGC_EECD_FLUDONE_I225) {
351 ret_val = 0;
352 break;
353 }
354 udelay(5);
355 }
356
357 return ret_val;
358 }
359
360 /**
361 * igc_update_flash_i225 - Commit EEPROM to the flash
362 * @hw: pointer to the HW structure
363 */
igc_update_flash_i225(struct igc_hw * hw)364 static s32 igc_update_flash_i225(struct igc_hw *hw)
365 {
366 s32 ret_val = 0;
367 u32 flup;
368
369 ret_val = igc_pool_flash_update_done_i225(hw);
370 if (ret_val == -IGC_ERR_NVM) {
371 hw_dbg("Flash update time out\n");
372 goto out;
373 }
374
375 flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
376 wr32(IGC_EECD, flup);
377
378 ret_val = igc_pool_flash_update_done_i225(hw);
379 if (ret_val)
380 hw_dbg("Flash update time out\n");
381 else
382 hw_dbg("Flash update complete\n");
383
384 out:
385 return ret_val;
386 }
387
388 /**
389 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
390 * @hw: pointer to the HW structure
391 *
392 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
393 * up to the checksum. Then calculates the EEPROM checksum and writes the
394 * value to the EEPROM. Next commit EEPROM data onto the Flash.
395 */
igc_update_nvm_checksum_i225(struct igc_hw * hw)396 static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
397 {
398 u16 checksum = 0;
399 s32 ret_val = 0;
400 u16 i, nvm_data;
401
402 /* Read the first word from the EEPROM. If this times out or fails, do
403 * not continue or we could be in for a very long wait while every
404 * EEPROM read fails
405 */
406 ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
407 if (ret_val) {
408 hw_dbg("EEPROM read failed\n");
409 goto out;
410 }
411
412 ret_val = hw->nvm.ops.acquire(hw);
413 if (ret_val)
414 goto out;
415
416 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
417 * because we do not want to take the synchronization
418 * semaphores twice here.
419 */
420
421 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
422 ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
423 if (ret_val) {
424 hw->nvm.ops.release(hw);
425 hw_dbg("NVM Read Error while updating checksum.\n");
426 goto out;
427 }
428 checksum += nvm_data;
429 }
430 checksum = (u16)NVM_SUM - checksum;
431 ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
432 &checksum);
433 if (ret_val) {
434 hw->nvm.ops.release(hw);
435 hw_dbg("NVM Write Error while updating checksum.\n");
436 goto out;
437 }
438
439 hw->nvm.ops.release(hw);
440
441 ret_val = igc_update_flash_i225(hw);
442
443 out:
444 return ret_val;
445 }
446
447 /**
448 * igc_get_flash_presence_i225 - Check if flash device is detected
449 * @hw: pointer to the HW structure
450 */
igc_get_flash_presence_i225(struct igc_hw * hw)451 bool igc_get_flash_presence_i225(struct igc_hw *hw)
452 {
453 bool ret_val = false;
454 u32 eec = 0;
455
456 eec = rd32(IGC_EECD);
457 if (eec & IGC_EECD_FLASH_DETECTED_I225)
458 ret_val = true;
459
460 return ret_val;
461 }
462
463 /**
464 * igc_init_nvm_params_i225 - Init NVM func ptrs.
465 * @hw: pointer to the HW structure
466 */
igc_init_nvm_params_i225(struct igc_hw * hw)467 s32 igc_init_nvm_params_i225(struct igc_hw *hw)
468 {
469 struct igc_nvm_info *nvm = &hw->nvm;
470
471 nvm->ops.acquire = igc_acquire_nvm_i225;
472 nvm->ops.release = igc_release_nvm_i225;
473
474 /* NVM Function Pointers */
475 if (igc_get_flash_presence_i225(hw)) {
476 hw->nvm.type = igc_nvm_flash_hw;
477 nvm->ops.read = igc_read_nvm_srrd_i225;
478 nvm->ops.write = igc_write_nvm_srwr_i225;
479 nvm->ops.validate = igc_validate_nvm_checksum_i225;
480 nvm->ops.update = igc_update_nvm_checksum_i225;
481 } else {
482 hw->nvm.type = igc_nvm_invm;
483 nvm->ops.read = igc_read_nvm_eerd;
484 nvm->ops.write = NULL;
485 nvm->ops.validate = NULL;
486 nvm->ops.update = NULL;
487 }
488 return 0;
489 }
490
491 /**
492 * igc_set_eee_i225 - Enable/disable EEE support
493 * @hw: pointer to the HW structure
494 * @adv2p5G: boolean flag enabling 2.5G EEE advertisement
495 * @adv1G: boolean flag enabling 1G EEE advertisement
496 * @adv100M: boolean flag enabling 100M EEE advertisement
497 *
498 * Enable/disable EEE based on setting in dev_spec structure.
499 **/
igc_set_eee_i225(struct igc_hw * hw,bool adv2p5G,bool adv1G,bool adv100M)500 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
501 bool adv100M)
502 {
503 u32 ipcnfg, eeer;
504
505 ipcnfg = rd32(IGC_IPCNFG);
506 eeer = rd32(IGC_EEER);
507
508 /* enable or disable per user setting */
509 if (hw->dev_spec._base.eee_enable) {
510 u32 eee_su = rd32(IGC_EEE_SU);
511
512 if (adv100M)
513 ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
514 else
515 ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
516
517 if (adv1G)
518 ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
519 else
520 ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
521
522 if (adv2p5G)
523 ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
524 else
525 ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
526
527 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
528 IGC_EEER_LPI_FC);
529
530 /* This bit should not be set in normal operation. */
531 if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
532 hw_dbg("LPI Clock Stop Bit should not be set!\n");
533 } else {
534 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
535 IGC_IPCNFG_EEE_100M_AN);
536 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
537 IGC_EEER_LPI_FC);
538 }
539 wr32(IGC_IPCNFG, ipcnfg);
540 wr32(IGC_EEER, eeer);
541 rd32(IGC_IPCNFG);
542 rd32(IGC_EEER);
543
544 return IGC_SUCCESS;
545 }
546
547 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
548 * @hw: pointer to the HW structure
549 * @link: bool indicating link status
550 *
551 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
552 * settings, otherwise specify that there is no LTR requirement.
553 */
igc_set_ltr_i225(struct igc_hw * hw,bool link)554 s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
555 {
556 u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
557 u16 speed, duplex;
558 s32 size;
559
560 /* If we do not have link, LTR thresholds are zero. */
561 if (link) {
562 hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
563
564 /* Check if using copper interface with EEE enabled or if the
565 * link speed is 10 Mbps.
566 */
567 if (hw->dev_spec._base.eee_enable &&
568 speed != SPEED_10) {
569 /* EEE enabled, so send LTRMAX threshold. */
570 ltrc = rd32(IGC_LTRC) |
571 IGC_LTRC_EEEMS_EN;
572 wr32(IGC_LTRC, ltrc);
573
574 /* Calculate tw_system (nsec). */
575 if (speed == SPEED_100) {
576 tw_system = ((rd32(IGC_EEE_SU) &
577 IGC_TW_SYSTEM_100_MASK) >>
578 IGC_TW_SYSTEM_100_SHIFT) * 500;
579 } else {
580 tw_system = (rd32(IGC_EEE_SU) &
581 IGC_TW_SYSTEM_1000_MASK) * 500;
582 }
583 } else {
584 tw_system = 0;
585 }
586
587 /* Get the Rx packet buffer size. */
588 size = rd32(IGC_RXPBS) &
589 IGC_RXPBS_SIZE_I225_MASK;
590
591 /* Calculations vary based on DMAC settings. */
592 if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
593 size -= (rd32(IGC_DMACR) &
594 IGC_DMACR_DMACTHR_MASK) >>
595 IGC_DMACR_DMACTHR_SHIFT;
596 /* Convert size to bits. */
597 size *= 1024 * 8;
598 } else {
599 /* Convert size to bytes, subtract the MTU, and then
600 * convert the size to bits.
601 */
602 size *= 1024;
603 size *= 8;
604 }
605
606 if (size < 0) {
607 hw_dbg("Invalid effective Rx buffer size %d\n",
608 size);
609 return -IGC_ERR_CONFIG;
610 }
611
612 /* Calculate the thresholds. Since speed is in Mbps, simplify
613 * the calculation by multiplying size/speed by 1000 for result
614 * to be in nsec before dividing by the scale in nsec. Set the
615 * scale such that the LTR threshold fits in the register.
616 */
617 ltr_min = (1000 * size) / speed;
618 ltr_max = ltr_min + tw_system;
619 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
620 IGC_LTRMINV_SCALE_32768;
621 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
622 IGC_LTRMAXV_SCALE_32768;
623 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
624 ltr_min -= 1;
625 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
626 ltr_max -= 1;
627
628 /* Only write the LTR thresholds if they differ from before. */
629 ltrv = rd32(IGC_LTRMINV);
630 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
631 ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
632 (scale_min << IGC_LTRMINV_SCALE_SHIFT);
633 wr32(IGC_LTRMINV, ltrv);
634 }
635
636 ltrv = rd32(IGC_LTRMAXV);
637 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
638 ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
639 (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
640 wr32(IGC_LTRMAXV, ltrv);
641 }
642 }
643
644 return IGC_SUCCESS;
645 }
646