1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include "igc_phy.h"
5 
6 /**
7  * igc_check_reset_block - Check if PHY reset is blocked
8  * @hw: pointer to the HW structure
9  *
10  * Read the PHY management control register and check whether a PHY reset
11  * is blocked.  If a reset is not blocked return 0, otherwise
12  * return IGC_ERR_BLK_PHY_RESET (12).
13  */
igc_check_reset_block(struct igc_hw * hw)14 s32 igc_check_reset_block(struct igc_hw *hw)
15 {
16 	u32 manc;
17 
18 	manc = rd32(IGC_MANC);
19 
20 	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
21 		IGC_ERR_BLK_PHY_RESET : 0;
22 }
23 
24 /**
25  * igc_get_phy_id - Retrieve the PHY ID and revision
26  * @hw: pointer to the HW structure
27  *
28  * Reads the PHY registers and stores the PHY ID and possibly the PHY
29  * revision in the hardware structure.
30  */
igc_get_phy_id(struct igc_hw * hw)31 s32 igc_get_phy_id(struct igc_hw *hw)
32 {
33 	struct igc_phy_info *phy = &hw->phy;
34 	s32 ret_val = 0;
35 	u16 phy_id;
36 
37 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
38 	if (ret_val)
39 		goto out;
40 
41 	phy->id = (u32)(phy_id << 16);
42 	usleep_range(200, 500);
43 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
44 	if (ret_val)
45 		goto out;
46 
47 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
48 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
49 
50 out:
51 	return ret_val;
52 }
53 
54 /**
55  * igc_phy_has_link - Polls PHY for link
56  * @hw: pointer to the HW structure
57  * @iterations: number of times to poll for link
58  * @usec_interval: delay between polling attempts
59  * @success: pointer to whether polling was successful or not
60  *
61  * Polls the PHY status register for link, 'iterations' number of times.
62  */
igc_phy_has_link(struct igc_hw * hw,u32 iterations,u32 usec_interval,bool * success)63 s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
64 		     u32 usec_interval, bool *success)
65 {
66 	u16 i, phy_status;
67 	s32 ret_val = 0;
68 
69 	for (i = 0; i < iterations; i++) {
70 		/* Some PHYs require the PHY_STATUS register to be read
71 		 * twice due to the link bit being sticky.  No harm doing
72 		 * it across the board.
73 		 */
74 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
75 		if (ret_val && usec_interval > 0) {
76 			/* If the first read fails, another entity may have
77 			 * ownership of the resources, wait and try again to
78 			 * see if they have relinquished the resources yet.
79 			 */
80 			if (usec_interval >= 1000)
81 				mdelay(usec_interval / 1000);
82 			else
83 				udelay(usec_interval);
84 		}
85 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
86 		if (ret_val)
87 			break;
88 		if (phy_status & MII_SR_LINK_STATUS)
89 			break;
90 		if (usec_interval >= 1000)
91 			mdelay(usec_interval / 1000);
92 		else
93 			udelay(usec_interval);
94 	}
95 
96 	*success = (i < iterations) ? true : false;
97 
98 	return ret_val;
99 }
100 
101 /**
102  * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103  * @hw: pointer to the HW structure
104  *
105  * In the case of a PHY power down to save power, or to turn off link during a
106  * driver unload, restore the link to previous settings.
107  */
igc_power_up_phy_copper(struct igc_hw * hw)108 void igc_power_up_phy_copper(struct igc_hw *hw)
109 {
110 	u16 mii_reg = 0;
111 
112 	/* The PHY will retain its settings across a power down/up cycle */
113 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
114 	mii_reg &= ~MII_CR_POWER_DOWN;
115 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
116 }
117 
118 /**
119  * igc_power_down_phy_copper - Power down copper PHY
120  * @hw: pointer to the HW structure
121  *
122  * Power down PHY to save power when interface is down and wake on lan
123  * is not enabled.
124  */
igc_power_down_phy_copper(struct igc_hw * hw)125 void igc_power_down_phy_copper(struct igc_hw *hw)
126 {
127 	u16 mii_reg = 0;
128 
129 	/* The PHY will retain its settings across a power down/up cycle */
130 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
131 	mii_reg |= MII_CR_POWER_DOWN;
132 
133 	/* Temporary workaround - should be removed when PHY will implement
134 	 * IEEE registers as properly
135 	 */
136 	/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137 	usleep_range(1000, 2000);
138 }
139 
140 /**
141  * igc_check_downshift - Checks whether a downshift in speed occurred
142  * @hw: pointer to the HW structure
143  *
144  * Success returns 0, Failure returns 1
145  *
146  * A downshift is detected by querying the PHY link health.
147  */
igc_check_downshift(struct igc_hw * hw)148 s32 igc_check_downshift(struct igc_hw *hw)
149 {
150 	struct igc_phy_info *phy = &hw->phy;
151 	s32 ret_val;
152 
153 	switch (phy->type) {
154 	case igc_phy_i225:
155 	default:
156 		/* speed downshift not supported */
157 		phy->speed_downgraded = false;
158 		ret_val = 0;
159 	}
160 
161 	return ret_val;
162 }
163 
164 /**
165  * igc_phy_hw_reset - PHY hardware reset
166  * @hw: pointer to the HW structure
167  *
168  * Verify the reset block is not blocking us from resetting.  Acquire
169  * semaphore (if necessary) and read/set/write the device control reset
170  * bit in the PHY.  Wait the appropriate delay time for the device to
171  * reset and release the semaphore (if necessary).
172  */
igc_phy_hw_reset(struct igc_hw * hw)173 s32 igc_phy_hw_reset(struct igc_hw *hw)
174 {
175 	struct igc_phy_info *phy = &hw->phy;
176 	u32 phpm = 0, timeout = 10000;
177 	s32  ret_val;
178 	u32 ctrl;
179 
180 	ret_val = igc_check_reset_block(hw);
181 	if (ret_val) {
182 		ret_val = 0;
183 		goto out;
184 	}
185 
186 	ret_val = phy->ops.acquire(hw);
187 	if (ret_val)
188 		goto out;
189 
190 	phpm = rd32(IGC_I225_PHPM);
191 
192 	ctrl = rd32(IGC_CTRL);
193 	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
194 	wrfl();
195 
196 	udelay(phy->reset_delay_us);
197 
198 	wr32(IGC_CTRL, ctrl);
199 	wrfl();
200 
201 	/* SW should guarantee 100us for the completion of the PHY reset */
202 	usleep_range(100, 150);
203 	do {
204 		phpm = rd32(IGC_I225_PHPM);
205 		timeout--;
206 		udelay(1);
207 	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
208 
209 	if (!timeout)
210 		hw_dbg("Timeout is expired after a phy reset\n");
211 
212 	usleep_range(100, 150);
213 
214 	phy->ops.release(hw);
215 
216 out:
217 	return ret_val;
218 }
219 
220 /**
221  * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
222  * @hw: pointer to the HW structure
223  *
224  * Reads the MII auto-neg advertisement register and/or the 1000T control
225  * register and if the PHY is already setup for auto-negotiation, then
226  * return successful.  Otherwise, setup advertisement and flow control to
227  * the appropriate values for the wanted auto-negotiation.
228  */
igc_phy_setup_autoneg(struct igc_hw * hw)229 static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
230 {
231 	struct igc_phy_info *phy = &hw->phy;
232 	u16 aneg_multigbt_an_ctrl = 0;
233 	u16 mii_1000t_ctrl_reg = 0;
234 	u16 mii_autoneg_adv_reg;
235 	s32 ret_val;
236 
237 	phy->autoneg_advertised &= phy->autoneg_mask;
238 
239 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
240 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
241 	if (ret_val)
242 		return ret_val;
243 
244 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
245 		/* Read the MII 1000Base-T Control Register (Address 9). */
246 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
247 					    &mii_1000t_ctrl_reg);
248 		if (ret_val)
249 			return ret_val;
250 	}
251 
252 	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
253 		/* Read the MULTI GBT AN Control Register - reg 7.32 */
254 		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
255 					    MMD_DEVADDR_SHIFT) |
256 					    ANEG_MULTIGBT_AN_CTRL,
257 					    &aneg_multigbt_an_ctrl);
258 
259 		if (ret_val)
260 			return ret_val;
261 	}
262 
263 	/* Need to parse both autoneg_advertised and fc and set up
264 	 * the appropriate PHY registers.  First we will parse for
265 	 * autoneg_advertised software override.  Since we can advertise
266 	 * a plethora of combinations, we need to check each bit
267 	 * individually.
268 	 */
269 
270 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
271 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
272 	 * the  1000Base-T Control Register (Address 9).
273 	 */
274 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
275 				 NWAY_AR_100TX_HD_CAPS |
276 				 NWAY_AR_10T_FD_CAPS   |
277 				 NWAY_AR_10T_HD_CAPS);
278 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
279 
280 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
281 
282 	/* Do we want to advertise 10 Mb Half Duplex? */
283 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
284 		hw_dbg("Advertise 10mb Half duplex\n");
285 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
286 	}
287 
288 	/* Do we want to advertise 10 Mb Full Duplex? */
289 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
290 		hw_dbg("Advertise 10mb Full duplex\n");
291 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
292 	}
293 
294 	/* Do we want to advertise 100 Mb Half Duplex? */
295 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
296 		hw_dbg("Advertise 100mb Half duplex\n");
297 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
298 	}
299 
300 	/* Do we want to advertise 100 Mb Full Duplex? */
301 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
302 		hw_dbg("Advertise 100mb Full duplex\n");
303 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
304 	}
305 
306 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
307 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
308 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
309 
310 	/* Do we want to advertise 1000 Mb Full Duplex? */
311 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
312 		hw_dbg("Advertise 1000mb Full duplex\n");
313 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
314 	}
315 
316 	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
317 	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
318 		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
319 
320 	/* Do we want to advertise 2500 Mb Full Duplex? */
321 	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
322 		hw_dbg("Advertise 2500mb Full duplex\n");
323 		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
324 	} else {
325 		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
326 	}
327 
328 	/* Check for a software override of the flow control settings, and
329 	 * setup the PHY advertisement registers accordingly.  If
330 	 * auto-negotiation is enabled, then software will have to set the
331 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
332 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
333 	 * negotiation.
334 	 *
335 	 * The possible values of the "fc" parameter are:
336 	 *      0:  Flow control is completely disabled
337 	 *      1:  Rx flow control is enabled (we can receive pause frames
338 	 *          but not send pause frames).
339 	 *      2:  Tx flow control is enabled (we can send pause frames
340 	 *          but we do not support receiving pause frames).
341 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
342 	 *  other:  No software override.  The flow control configuration
343 	 *          in the EEPROM is used.
344 	 */
345 	switch (hw->fc.current_mode) {
346 	case igc_fc_none:
347 		/* Flow control (Rx & Tx) is completely disabled by a
348 		 * software over-ride.
349 		 */
350 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
351 		break;
352 	case igc_fc_rx_pause:
353 		/* Rx Flow control is enabled, and Tx Flow control is
354 		 * disabled, by a software over-ride.
355 		 *
356 		 * Since there really isn't a way to advertise that we are
357 		 * capable of Rx Pause ONLY, we will advertise that we
358 		 * support both symmetric and asymmetric Rx PAUSE.  Later
359 		 * (in igc_config_fc_after_link_up) we will disable the
360 		 * hw's ability to send PAUSE frames.
361 		 */
362 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
363 		break;
364 	case igc_fc_tx_pause:
365 		/* Tx Flow control is enabled, and Rx Flow control is
366 		 * disabled, by a software over-ride.
367 		 */
368 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
369 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
370 		break;
371 	case igc_fc_full:
372 		/* Flow control (both Rx and Tx) is enabled by a software
373 		 * over-ride.
374 		 */
375 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
376 		break;
377 	default:
378 		hw_dbg("Flow control param set incorrectly\n");
379 		return -IGC_ERR_CONFIG;
380 	}
381 
382 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
383 	if (ret_val)
384 		return ret_val;
385 
386 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
387 
388 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
389 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
390 					     mii_1000t_ctrl_reg);
391 
392 	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
393 		ret_val = phy->ops.write_reg(hw,
394 					     (STANDARD_AN_REG_MASK <<
395 					     MMD_DEVADDR_SHIFT) |
396 					     ANEG_MULTIGBT_AN_CTRL,
397 					     aneg_multigbt_an_ctrl);
398 
399 	return ret_val;
400 }
401 
402 /**
403  * igc_wait_autoneg - Wait for auto-neg completion
404  * @hw: pointer to the HW structure
405  *
406  * Waits for auto-negotiation to complete or for the auto-negotiation time
407  * limit to expire, which ever happens first.
408  */
igc_wait_autoneg(struct igc_hw * hw)409 static s32 igc_wait_autoneg(struct igc_hw *hw)
410 {
411 	u16 i, phy_status;
412 	s32 ret_val = 0;
413 
414 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
415 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
416 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
417 		if (ret_val)
418 			break;
419 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
420 		if (ret_val)
421 			break;
422 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
423 			break;
424 		msleep(100);
425 	}
426 
427 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
428 	 * has completed.
429 	 */
430 	return ret_val;
431 }
432 
433 /**
434  * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
435  * @hw: pointer to the HW structure
436  *
437  * Performs initial bounds checking on autoneg advertisement parameter, then
438  * configure to advertise the full capability.  Setup the PHY to autoneg
439  * and restart the negotiation process between the link partner.  If
440  * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
441  */
igc_copper_link_autoneg(struct igc_hw * hw)442 static s32 igc_copper_link_autoneg(struct igc_hw *hw)
443 {
444 	struct igc_phy_info *phy = &hw->phy;
445 	u16 phy_ctrl;
446 	s32 ret_val;
447 
448 	/* Perform some bounds checking on the autoneg advertisement
449 	 * parameter.
450 	 */
451 	phy->autoneg_advertised &= phy->autoneg_mask;
452 
453 	/* If autoneg_advertised is zero, we assume it was not defaulted
454 	 * by the calling code so we set to advertise full capability.
455 	 */
456 	if (phy->autoneg_advertised == 0)
457 		phy->autoneg_advertised = phy->autoneg_mask;
458 
459 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
460 	ret_val = igc_phy_setup_autoneg(hw);
461 	if (ret_val) {
462 		hw_dbg("Error Setting up Auto-Negotiation\n");
463 		goto out;
464 	}
465 	hw_dbg("Restarting Auto-Neg\n");
466 
467 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
468 	 * the Auto Neg Restart bit in the PHY control register.
469 	 */
470 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
471 	if (ret_val)
472 		goto out;
473 
474 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
475 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
476 	if (ret_val)
477 		goto out;
478 
479 	/* Does the user want to wait for Auto-Neg to complete here, or
480 	 * check at a later time (for example, callback routine).
481 	 */
482 	if (phy->autoneg_wait_to_complete) {
483 		ret_val = igc_wait_autoneg(hw);
484 		if (ret_val) {
485 			hw_dbg("Error while waiting for autoneg to complete\n");
486 			goto out;
487 		}
488 	}
489 
490 	hw->mac.get_link_status = true;
491 
492 out:
493 	return ret_val;
494 }
495 
496 /**
497  * igc_setup_copper_link - Configure copper link settings
498  * @hw: pointer to the HW structure
499  *
500  * Calls the appropriate function to configure the link for auto-neg or forced
501  * speed and duplex.  Then we check for link, once link is established calls
502  * to configure collision distance and flow control are called.  If link is
503  * not established, we return -IGC_ERR_PHY (-2).
504  */
igc_setup_copper_link(struct igc_hw * hw)505 s32 igc_setup_copper_link(struct igc_hw *hw)
506 {
507 	s32 ret_val = 0;
508 	bool link;
509 
510 	if (hw->mac.autoneg) {
511 		/* Setup autoneg and flow control advertisement and perform
512 		 * autonegotiation.
513 		 */
514 		ret_val = igc_copper_link_autoneg(hw);
515 		if (ret_val)
516 			goto out;
517 	} else {
518 		/* PHY will be set to 10H, 10F, 100H or 100F
519 		 * depending on user settings.
520 		 */
521 		hw_dbg("Forcing Speed and Duplex\n");
522 		ret_val = hw->phy.ops.force_speed_duplex(hw);
523 		if (ret_val) {
524 			hw_dbg("Error Forcing Speed and Duplex\n");
525 			goto out;
526 		}
527 	}
528 
529 	/* Check link status. Wait up to 100 microseconds for link to become
530 	 * valid.
531 	 */
532 	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
533 	if (ret_val)
534 		goto out;
535 
536 	if (link) {
537 		hw_dbg("Valid link established!!!\n");
538 		igc_config_collision_dist(hw);
539 		ret_val = igc_config_fc_after_link_up(hw);
540 	} else {
541 		hw_dbg("Unable to establish link!!!\n");
542 	}
543 
544 out:
545 	return ret_val;
546 }
547 
548 /**
549  * igc_read_phy_reg_mdic - Read MDI control register
550  * @hw: pointer to the HW structure
551  * @offset: register offset to be read
552  * @data: pointer to the read data
553  *
554  * Reads the MDI control register in the PHY at offset and stores the
555  * information read to data.
556  */
igc_read_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 * data)557 static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
558 {
559 	struct igc_phy_info *phy = &hw->phy;
560 	u32 i, mdic = 0;
561 	s32 ret_val = 0;
562 
563 	if (offset > MAX_PHY_REG_ADDRESS) {
564 		hw_dbg("PHY Address %d is out of range\n", offset);
565 		ret_val = -IGC_ERR_PARAM;
566 		goto out;
567 	}
568 
569 	/* Set up Op-code, Phy Address, and register offset in the MDI
570 	 * Control register.  The MAC will take care of interfacing with the
571 	 * PHY to retrieve the desired data.
572 	 */
573 	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
574 		(phy->addr << IGC_MDIC_PHY_SHIFT) |
575 		(IGC_MDIC_OP_READ));
576 
577 	wr32(IGC_MDIC, mdic);
578 
579 	/* Poll the ready bit to see if the MDI read completed
580 	 * Increasing the time out as testing showed failures with
581 	 * the lower time out
582 	 */
583 	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
584 		usleep_range(500, 1000);
585 		mdic = rd32(IGC_MDIC);
586 		if (mdic & IGC_MDIC_READY)
587 			break;
588 	}
589 	if (!(mdic & IGC_MDIC_READY)) {
590 		hw_dbg("MDI Read did not complete\n");
591 		ret_val = -IGC_ERR_PHY;
592 		goto out;
593 	}
594 	if (mdic & IGC_MDIC_ERROR) {
595 		hw_dbg("MDI Error\n");
596 		ret_val = -IGC_ERR_PHY;
597 		goto out;
598 	}
599 	*data = (u16)mdic;
600 
601 out:
602 	return ret_val;
603 }
604 
605 /**
606  * igc_write_phy_reg_mdic - Write MDI control register
607  * @hw: pointer to the HW structure
608  * @offset: register offset to write to
609  * @data: data to write to register at offset
610  *
611  * Writes data to MDI control register in the PHY at offset.
612  */
igc_write_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 data)613 static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
614 {
615 	struct igc_phy_info *phy = &hw->phy;
616 	u32 i, mdic = 0;
617 	s32 ret_val = 0;
618 
619 	if (offset > MAX_PHY_REG_ADDRESS) {
620 		hw_dbg("PHY Address %d is out of range\n", offset);
621 		ret_val = -IGC_ERR_PARAM;
622 		goto out;
623 	}
624 
625 	/* Set up Op-code, Phy Address, and register offset in the MDI
626 	 * Control register.  The MAC will take care of interfacing with the
627 	 * PHY to write the desired data.
628 	 */
629 	mdic = (((u32)data) |
630 		(offset << IGC_MDIC_REG_SHIFT) |
631 		(phy->addr << IGC_MDIC_PHY_SHIFT) |
632 		(IGC_MDIC_OP_WRITE));
633 
634 	wr32(IGC_MDIC, mdic);
635 
636 	/* Poll the ready bit to see if the MDI read completed
637 	 * Increasing the time out as testing showed failures with
638 	 * the lower time out
639 	 */
640 	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
641 		usleep_range(500, 1000);
642 		mdic = rd32(IGC_MDIC);
643 		if (mdic & IGC_MDIC_READY)
644 			break;
645 	}
646 	if (!(mdic & IGC_MDIC_READY)) {
647 		hw_dbg("MDI Write did not complete\n");
648 		ret_val = -IGC_ERR_PHY;
649 		goto out;
650 	}
651 	if (mdic & IGC_MDIC_ERROR) {
652 		hw_dbg("MDI Error\n");
653 		ret_val = -IGC_ERR_PHY;
654 		goto out;
655 	}
656 
657 out:
658 	return ret_val;
659 }
660 
661 /**
662  * __igc_access_xmdio_reg - Read/write XMDIO register
663  * @hw: pointer to the HW structure
664  * @address: XMDIO address to program
665  * @dev_addr: device address to program
666  * @data: pointer to value to read/write from/to the XMDIO address
667  * @read: boolean flag to indicate read or write
668  */
__igc_access_xmdio_reg(struct igc_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)669 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
670 				  u8 dev_addr, u16 *data, bool read)
671 {
672 	s32 ret_val;
673 
674 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
675 	if (ret_val)
676 		return ret_val;
677 
678 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
679 	if (ret_val)
680 		return ret_val;
681 
682 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
683 					dev_addr);
684 	if (ret_val)
685 		return ret_val;
686 
687 	if (read)
688 		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
689 	else
690 		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
691 	if (ret_val)
692 		return ret_val;
693 
694 	/* Recalibrate the device back to 0 */
695 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
696 	if (ret_val)
697 		return ret_val;
698 
699 	return ret_val;
700 }
701 
702 /**
703  * igc_read_xmdio_reg - Read XMDIO register
704  * @hw: pointer to the HW structure
705  * @addr: XMDIO address to program
706  * @dev_addr: device address to program
707  * @data: value to be read from the EMI address
708  */
igc_read_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 * data)709 static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
710 			      u8 dev_addr, u16 *data)
711 {
712 	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
713 }
714 
715 /**
716  * igc_write_xmdio_reg - Write XMDIO register
717  * @hw: pointer to the HW structure
718  * @addr: XMDIO address to program
719  * @dev_addr: device address to program
720  * @data: value to be written to the XMDIO address
721  */
igc_write_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 data)722 static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
723 			       u8 dev_addr, u16 data)
724 {
725 	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
726 }
727 
728 /**
729  * igc_write_phy_reg_gpy - Write GPY PHY register
730  * @hw: pointer to the HW structure
731  * @offset: register offset to write to
732  * @data: data to write at register offset
733  *
734  * Acquires semaphore, if necessary, then writes the data to PHY register
735  * at the offset. Release any acquired semaphores before exiting.
736  */
igc_write_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 data)737 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
738 {
739 	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
740 	s32 ret_val;
741 
742 	offset = offset & GPY_REG_MASK;
743 
744 	if (!dev_addr) {
745 		ret_val = hw->phy.ops.acquire(hw);
746 		if (ret_val)
747 			return ret_val;
748 		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
749 		if (ret_val)
750 			return ret_val;
751 		hw->phy.ops.release(hw);
752 	} else {
753 		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
754 					      data);
755 	}
756 
757 	return ret_val;
758 }
759 
760 /**
761  * igc_read_phy_reg_gpy - Read GPY PHY register
762  * @hw: pointer to the HW structure
763  * @offset: lower half is register offset to read to
764  * upper half is MMD to use.
765  * @data: data to read at register offset
766  *
767  * Acquires semaphore, if necessary, then reads the data in the PHY register
768  * at the offset. Release any acquired semaphores before exiting.
769  */
igc_read_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 * data)770 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
771 {
772 	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
773 	s32 ret_val;
774 
775 	offset = offset & GPY_REG_MASK;
776 
777 	if (!dev_addr) {
778 		ret_val = hw->phy.ops.acquire(hw);
779 		if (ret_val)
780 			return ret_val;
781 		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
782 		if (ret_val)
783 			return ret_val;
784 		hw->phy.ops.release(hw);
785 	} else {
786 		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
787 					     data);
788 	}
789 
790 	return ret_val;
791 }
792 
793 /**
794  * igc_read_phy_fw_version - Read gPHY firmware version
795  * @hw: pointer to the HW structure
796  */
igc_read_phy_fw_version(struct igc_hw * hw)797 u16 igc_read_phy_fw_version(struct igc_hw *hw)
798 {
799 	struct igc_phy_info *phy = &hw->phy;
800 	u16 gphy_version = 0;
801 	u16 ret_val;
802 
803 	/* NVM image version is reported as firmware version for i225 device */
804 	ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version);
805 	if (ret_val)
806 		hw_dbg("igc_phy: read wrong gphy version\n");
807 
808 	return gphy_version;
809 }
810