1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale FlexTimer Module (FTM) alarm device driver.
4 *
5 * Copyright 2014 Freescale Semiconductor, Inc.
6 * Copyright 2019-2020 NXP
7 *
8 */
9
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/module.h>
20 #include <linux/fsl/ftm.h>
21 #include <linux/rtc.h>
22 #include <linux/time.h>
23 #include <linux/acpi.h>
24 #include <linux/pm_wakeirq.h>
25
26 #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
27
28 /*
29 * Select Fixed frequency clock (32KHz) as clock source
30 * of FlexTimer Module
31 */
32 #define FTM_SC_CLKS_FIXED_FREQ 0x02
33 #define FIXED_FREQ_CLK 32000
34
35 /* Select 128 (2^7) as divider factor */
36 #define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK)
37
38 /* Maximum counter value in FlexTimer's CNT registers */
39 #define MAX_COUNT_VAL 0xffff
40
41 struct ftm_rtc {
42 struct rtc_device *rtc_dev;
43 void __iomem *base;
44 bool big_endian;
45 u32 alarm_freq;
46 };
47
rtc_readl(struct ftm_rtc * dev,u32 reg)48 static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
49 {
50 if (dev->big_endian)
51 return ioread32be(dev->base + reg);
52 else
53 return ioread32(dev->base + reg);
54 }
55
rtc_writel(struct ftm_rtc * dev,u32 reg,u32 val)56 static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
57 {
58 if (dev->big_endian)
59 iowrite32be(val, dev->base + reg);
60 else
61 iowrite32(val, dev->base + reg);
62 }
63
ftm_counter_enable(struct ftm_rtc * rtc)64 static inline void ftm_counter_enable(struct ftm_rtc *rtc)
65 {
66 u32 val;
67
68 /* select and enable counter clock source */
69 val = rtc_readl(rtc, FTM_SC);
70 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
71 val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
72 rtc_writel(rtc, FTM_SC, val);
73 }
74
ftm_counter_disable(struct ftm_rtc * rtc)75 static inline void ftm_counter_disable(struct ftm_rtc *rtc)
76 {
77 u32 val;
78
79 /* disable counter clock source */
80 val = rtc_readl(rtc, FTM_SC);
81 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
82 rtc_writel(rtc, FTM_SC, val);
83 }
84
ftm_irq_acknowledge(struct ftm_rtc * rtc)85 static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
86 {
87 unsigned int timeout = 100;
88
89 /*
90 *Fix errata A-007728 for flextimer
91 * If the FTM counter reaches the FTM_MOD value between
92 * the reading of the TOF bit and the writing of 0 to
93 * the TOF bit, the process of clearing the TOF bit
94 * does not work as expected when FTMx_CONF[NUMTOF] != 0
95 * and the current TOF count is less than FTMx_CONF[NUMTOF].
96 * If the above condition is met, the TOF bit remains set.
97 * If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
98 * TOF interrupt also remains asserted.
99 *
100 * Above is the errata discription
101 *
102 * In one word: software clearing TOF bit not works when
103 * FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
104 * reaches the FTM_MOD value.
105 *
106 * The workaround is clearing TOF bit until it works
107 * (FTM counter doesn't always reache the FTM_MOD anyway),
108 * which may cost some cycles.
109 */
110 while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
111 rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
112 }
113
ftm_irq_enable(struct ftm_rtc * rtc)114 static inline void ftm_irq_enable(struct ftm_rtc *rtc)
115 {
116 u32 val;
117
118 val = rtc_readl(rtc, FTM_SC);
119 val |= FTM_SC_TOIE;
120 rtc_writel(rtc, FTM_SC, val);
121 }
122
ftm_irq_disable(struct ftm_rtc * rtc)123 static inline void ftm_irq_disable(struct ftm_rtc *rtc)
124 {
125 u32 val;
126
127 val = rtc_readl(rtc, FTM_SC);
128 val &= ~FTM_SC_TOIE;
129 rtc_writel(rtc, FTM_SC, val);
130 }
131
ftm_reset_counter(struct ftm_rtc * rtc)132 static inline void ftm_reset_counter(struct ftm_rtc *rtc)
133 {
134 /*
135 * The CNT register contains the FTM counter value.
136 * Reset clears the CNT register. Writing any value to COUNT
137 * updates the counter with its initial value, CNTIN.
138 */
139 rtc_writel(rtc, FTM_CNT, 0x00);
140 }
141
ftm_clean_alarm(struct ftm_rtc * rtc)142 static void ftm_clean_alarm(struct ftm_rtc *rtc)
143 {
144 ftm_counter_disable(rtc);
145
146 rtc_writel(rtc, FTM_CNTIN, 0x00);
147 rtc_writel(rtc, FTM_MOD, ~0U);
148
149 ftm_reset_counter(rtc);
150 }
151
ftm_rtc_alarm_interrupt(int irq,void * dev)152 static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
153 {
154 struct ftm_rtc *rtc = dev;
155
156 rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
157
158 ftm_irq_acknowledge(rtc);
159 ftm_irq_disable(rtc);
160 ftm_clean_alarm(rtc);
161
162 return IRQ_HANDLED;
163 }
164
ftm_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)165 static int ftm_rtc_alarm_irq_enable(struct device *dev,
166 unsigned int enabled)
167 {
168 struct ftm_rtc *rtc = dev_get_drvdata(dev);
169
170 if (enabled)
171 ftm_irq_enable(rtc);
172 else
173 ftm_irq_disable(rtc);
174
175 return 0;
176 }
177
178 /*
179 * Note:
180 * The function is not really getting time from the RTC
181 * since FlexTimer is not a RTC device, but we need to
182 * get time to setup alarm, so we are using system time
183 * for now.
184 */
ftm_rtc_read_time(struct device * dev,struct rtc_time * tm)185 static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
186 {
187 rtc_time64_to_tm(ktime_get_real_seconds(), tm);
188
189 return 0;
190 }
191
ftm_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alm)192 static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
193 {
194 return 0;
195 }
196
197 /*
198 * 1. Select fixed frequency clock (32KHz) as clock source;
199 * 2. Select 128 (2^7) as divider factor;
200 * So clock is 250 Hz (32KHz/128).
201 *
202 * 3. FlexTimer's CNT register is a 32bit register,
203 * but the register's 16 bit as counter value,it's other 16 bit
204 * is reserved.So minimum counter value is 0x0,maximum counter
205 * value is 0xffff.
206 * So max alarm value is 262 (65536 / 250) seconds
207 */
ftm_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alm)208 static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
209 {
210 time64_t alm_time;
211 unsigned long long cycle;
212 struct ftm_rtc *rtc = dev_get_drvdata(dev);
213
214 alm_time = rtc_tm_to_time64(&alm->time);
215
216 ftm_clean_alarm(rtc);
217 cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq;
218 if (cycle > MAX_COUNT_VAL) {
219 pr_err("Out of alarm range {0~262} seconds.\n");
220 return -ERANGE;
221 }
222
223 ftm_irq_disable(rtc);
224
225 /*
226 * The counter increments until the value of MOD is reached,
227 * at which point the counter is reloaded with the value of CNTIN.
228 * The TOF (the overflow flag) bit is set when the FTM counter
229 * changes from MOD to CNTIN. So we should using the cycle - 1.
230 */
231 rtc_writel(rtc, FTM_MOD, cycle - 1);
232
233 ftm_counter_enable(rtc);
234 ftm_irq_enable(rtc);
235
236 return 0;
237
238 }
239
240 static const struct rtc_class_ops ftm_rtc_ops = {
241 .read_time = ftm_rtc_read_time,
242 .read_alarm = ftm_rtc_read_alarm,
243 .set_alarm = ftm_rtc_set_alarm,
244 .alarm_irq_enable = ftm_rtc_alarm_irq_enable,
245 };
246
ftm_rtc_probe(struct platform_device * pdev)247 static int ftm_rtc_probe(struct platform_device *pdev)
248 {
249 int irq;
250 int ret;
251 struct ftm_rtc *rtc;
252
253 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
254 if (unlikely(!rtc)) {
255 dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
256 return -ENOMEM;
257 }
258
259 platform_set_drvdata(pdev, rtc);
260
261 rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
262 if (IS_ERR(rtc->rtc_dev))
263 return PTR_ERR(rtc->rtc_dev);
264
265 rtc->base = devm_platform_ioremap_resource(pdev, 0);
266 if (IS_ERR(rtc->base)) {
267 dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
268 return PTR_ERR(rtc->base);
269 }
270
271 irq = platform_get_irq(pdev, 0);
272 if (irq < 0)
273 return irq;
274
275 ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
276 0, dev_name(&pdev->dev), rtc);
277 if (ret < 0) {
278 dev_err(&pdev->dev, "failed to request irq\n");
279 return ret;
280 }
281
282 rtc->big_endian =
283 device_property_read_bool(&pdev->dev, "big-endian");
284
285 rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
286 rtc->rtc_dev->ops = &ftm_rtc_ops;
287
288 device_init_wakeup(&pdev->dev, true);
289 ret = dev_pm_set_wake_irq(&pdev->dev, irq);
290 if (ret)
291 dev_err(&pdev->dev, "failed to enable irq wake\n");
292
293 ret = devm_rtc_register_device(rtc->rtc_dev);
294 if (ret) {
295 dev_err(&pdev->dev, "can't register rtc device\n");
296 return ret;
297 }
298
299 return 0;
300 }
301
302 static const struct of_device_id ftm_rtc_match[] = {
303 { .compatible = "fsl,ls1012a-ftm-alarm", },
304 { .compatible = "fsl,ls1021a-ftm-alarm", },
305 { .compatible = "fsl,ls1028a-ftm-alarm", },
306 { .compatible = "fsl,ls1043a-ftm-alarm", },
307 { .compatible = "fsl,ls1046a-ftm-alarm", },
308 { .compatible = "fsl,ls1088a-ftm-alarm", },
309 { .compatible = "fsl,ls208xa-ftm-alarm", },
310 { .compatible = "fsl,lx2160a-ftm-alarm", },
311 { },
312 };
313 MODULE_DEVICE_TABLE(of, ftm_rtc_match);
314
315 static const struct acpi_device_id ftm_imx_acpi_ids[] = {
316 {"NXP0014",},
317 { }
318 };
319 MODULE_DEVICE_TABLE(acpi, ftm_imx_acpi_ids);
320
321 static struct platform_driver ftm_rtc_driver = {
322 .probe = ftm_rtc_probe,
323 .driver = {
324 .name = "ftm-alarm",
325 .of_match_table = ftm_rtc_match,
326 .acpi_match_table = ACPI_PTR(ftm_imx_acpi_ids),
327 },
328 };
329
ftm_alarm_init(void)330 static int __init ftm_alarm_init(void)
331 {
332 return platform_driver_register(&ftm_rtc_driver);
333 }
334
335 device_initcall(ftm_alarm_init);
336
337 MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
338 MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
339 MODULE_LICENSE("GPL");
340