1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15
16 /*
17 * ordered_data_close is set by truncate when a file that used
18 * to have good data has been truncated to zero. When it is set
19 * the btrfs file release call will add this inode to the
20 * ordered operations list so that we make sure to flush out any
21 * new data the application may have written before commit.
22 */
23 enum {
24 BTRFS_INODE_FLUSH_ON_CLOSE,
25 BTRFS_INODE_DUMMY,
26 BTRFS_INODE_IN_DEFRAG,
27 BTRFS_INODE_HAS_ASYNC_EXTENT,
28 /*
29 * Always set under the VFS' inode lock, otherwise it can cause races
30 * during fsync (we start as a fast fsync and then end up in a full
31 * fsync racing with ordered extent completion).
32 */
33 BTRFS_INODE_NEEDS_FULL_SYNC,
34 BTRFS_INODE_COPY_EVERYTHING,
35 BTRFS_INODE_IN_DELALLOC_LIST,
36 BTRFS_INODE_HAS_PROPS,
37 BTRFS_INODE_SNAPSHOT_FLUSH,
38 /*
39 * Set and used when logging an inode and it serves to signal that an
40 * inode does not have xattrs, so subsequent fsyncs can avoid searching
41 * for xattrs to log. This bit must be cleared whenever a xattr is added
42 * to an inode.
43 */
44 BTRFS_INODE_NO_XATTRS,
45 /*
46 * Set when we are in a context where we need to start a transaction and
47 * have dirty pages with the respective file range locked. This is to
48 * ensure that when reserving space for the transaction, if we are low
49 * on available space and need to flush delalloc, we will not flush
50 * delalloc for this inode, because that could result in a deadlock (on
51 * the file range, inode's io_tree).
52 */
53 BTRFS_INODE_NO_DELALLOC_FLUSH,
54 /*
55 * Set when we are working on enabling verity for a file. Computing and
56 * writing the whole Merkle tree can take a while so we want to prevent
57 * races where two separate tasks attempt to simultaneously start verity
58 * on the same file.
59 */
60 BTRFS_INODE_VERITY_IN_PROGRESS,
61 };
62
63 /* in memory btrfs inode */
64 struct btrfs_inode {
65 /* which subvolume this inode belongs to */
66 struct btrfs_root *root;
67
68 /* key used to find this inode on disk. This is used by the code
69 * to read in roots of subvolumes
70 */
71 struct btrfs_key location;
72
73 /*
74 * Lock for counters and all fields used to determine if the inode is in
75 * the log or not (last_trans, last_sub_trans, last_log_commit,
76 * logged_trans), to access/update new_delalloc_bytes and to update the
77 * VFS' inode number of bytes used.
78 */
79 spinlock_t lock;
80
81 /* the extent_tree has caches of all the extent mappings to disk */
82 struct extent_map_tree extent_tree;
83
84 /* the io_tree does range state (DIRTY, LOCKED etc) */
85 struct extent_io_tree io_tree;
86
87 /* special utility tree used to record which mirrors have already been
88 * tried when checksums fail for a given block
89 */
90 struct extent_io_tree io_failure_tree;
91
92 /*
93 * Keep track of where the inode has extent items mapped in order to
94 * make sure the i_size adjustments are accurate
95 */
96 struct extent_io_tree file_extent_tree;
97
98 /* held while logging the inode in tree-log.c */
99 struct mutex log_mutex;
100
101 /* used to order data wrt metadata */
102 struct btrfs_ordered_inode_tree ordered_tree;
103
104 /* list of all the delalloc inodes in the FS. There are times we need
105 * to write all the delalloc pages to disk, and this list is used
106 * to walk them all.
107 */
108 struct list_head delalloc_inodes;
109
110 /* node for the red-black tree that links inodes in subvolume root */
111 struct rb_node rb_node;
112
113 unsigned long runtime_flags;
114
115 /* Keep track of who's O_SYNC/fsyncing currently */
116 atomic_t sync_writers;
117
118 /* full 64 bit generation number, struct vfs_inode doesn't have a big
119 * enough field for this.
120 */
121 u64 generation;
122
123 /*
124 * transid of the trans_handle that last modified this inode
125 */
126 u64 last_trans;
127
128 /*
129 * transid that last logged this inode
130 */
131 u64 logged_trans;
132
133 /*
134 * log transid when this inode was last modified
135 */
136 int last_sub_trans;
137
138 /* a local copy of root's last_log_commit */
139 int last_log_commit;
140
141 union {
142 /*
143 * Total number of bytes pending delalloc, used by stat to
144 * calculate the real block usage of the file. This is used
145 * only for files.
146 */
147 u64 delalloc_bytes;
148 /*
149 * The offset of the last dir item key that was logged.
150 * This is used only for directories.
151 */
152 u64 last_dir_item_offset;
153 };
154
155 union {
156 /*
157 * Total number of bytes pending delalloc that fall within a file
158 * range that is either a hole or beyond EOF (and no prealloc extent
159 * exists in the range). This is always <= delalloc_bytes and this
160 * is used only for files.
161 */
162 u64 new_delalloc_bytes;
163 /*
164 * The offset of the last dir index key that was logged.
165 * This is used only for directories.
166 */
167 u64 last_dir_index_offset;
168 };
169
170 /*
171 * total number of bytes pending defrag, used by stat to check whether
172 * it needs COW.
173 */
174 u64 defrag_bytes;
175
176 /*
177 * the size of the file stored in the metadata on disk. data=ordered
178 * means the in-memory i_size might be larger than the size on disk
179 * because not all the blocks are written yet.
180 */
181 u64 disk_i_size;
182
183 /*
184 * if this is a directory then index_cnt is the counter for the index
185 * number for new files that are created
186 */
187 u64 index_cnt;
188
189 /* Cache the directory index number to speed the dir/file remove */
190 u64 dir_index;
191
192 /* the fsync log has some corner cases that mean we have to check
193 * directories to see if any unlinks have been done before
194 * the directory was logged. See tree-log.c for all the
195 * details
196 */
197 u64 last_unlink_trans;
198
199 /*
200 * The id/generation of the last transaction where this inode was
201 * either the source or the destination of a clone/dedupe operation.
202 * Used when logging an inode to know if there are shared extents that
203 * need special care when logging checksum items, to avoid duplicate
204 * checksum items in a log (which can lead to a corruption where we end
205 * up with missing checksum ranges after log replay).
206 * Protected by the vfs inode lock.
207 */
208 u64 last_reflink_trans;
209
210 /*
211 * Number of bytes outstanding that are going to need csums. This is
212 * used in ENOSPC accounting.
213 */
214 u64 csum_bytes;
215
216 /* Backwards incompatible flags, lower half of inode_item::flags */
217 u32 flags;
218 /* Read-only compatibility flags, upper half of inode_item::flags */
219 u32 ro_flags;
220
221 /*
222 * Counters to keep track of the number of extent item's we may use due
223 * to delalloc and such. outstanding_extents is the number of extent
224 * items we think we'll end up using, and reserved_extents is the number
225 * of extent items we've reserved metadata for.
226 */
227 unsigned outstanding_extents;
228
229 struct btrfs_block_rsv block_rsv;
230
231 /*
232 * Cached values of inode properties
233 */
234 unsigned prop_compress; /* per-file compression algorithm */
235 /*
236 * Force compression on the file using the defrag ioctl, could be
237 * different from prop_compress and takes precedence if set
238 */
239 unsigned defrag_compress;
240
241 struct btrfs_delayed_node *delayed_node;
242
243 /* File creation time. */
244 struct timespec64 i_otime;
245
246 /* Hook into fs_info->delayed_iputs */
247 struct list_head delayed_iput;
248
249 struct rw_semaphore i_mmap_lock;
250 struct inode vfs_inode;
251 };
252
btrfs_inode_sectorsize(const struct btrfs_inode * inode)253 static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode)
254 {
255 return inode->root->fs_info->sectorsize;
256 }
257
BTRFS_I(const struct inode * inode)258 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
259 {
260 return container_of(inode, struct btrfs_inode, vfs_inode);
261 }
262
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)263 static inline unsigned long btrfs_inode_hash(u64 objectid,
264 const struct btrfs_root *root)
265 {
266 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
267
268 #if BITS_PER_LONG == 32
269 h = (h >> 32) ^ (h & 0xffffffff);
270 #endif
271
272 return (unsigned long)h;
273 }
274
btrfs_insert_inode_hash(struct inode * inode)275 static inline void btrfs_insert_inode_hash(struct inode *inode)
276 {
277 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
278
279 __insert_inode_hash(inode, h);
280 }
281
btrfs_ino(const struct btrfs_inode * inode)282 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
283 {
284 u64 ino = inode->location.objectid;
285
286 /*
287 * !ino: btree_inode
288 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
289 */
290 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
291 ino = inode->vfs_inode.i_ino;
292 return ino;
293 }
294
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)295 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
296 {
297 i_size_write(&inode->vfs_inode, size);
298 inode->disk_i_size = size;
299 }
300
btrfs_is_free_space_inode(struct btrfs_inode * inode)301 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
302 {
303 struct btrfs_root *root = inode->root;
304
305 if (root == root->fs_info->tree_root &&
306 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
307 return true;
308 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
309 return true;
310 return false;
311 }
312
is_data_inode(struct inode * inode)313 static inline bool is_data_inode(struct inode *inode)
314 {
315 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
316 }
317
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)318 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
319 int mod)
320 {
321 lockdep_assert_held(&inode->lock);
322 inode->outstanding_extents += mod;
323 if (btrfs_is_free_space_inode(inode))
324 return;
325 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
326 mod);
327 }
328
329 /*
330 * Called every time after doing a buffered, direct IO or memory mapped write.
331 *
332 * This is to ensure that if we write to a file that was previously fsynced in
333 * the current transaction, then try to fsync it again in the same transaction,
334 * we will know that there were changes in the file and that it needs to be
335 * logged.
336 */
btrfs_set_inode_last_sub_trans(struct btrfs_inode * inode)337 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
338 {
339 spin_lock(&inode->lock);
340 inode->last_sub_trans = inode->root->log_transid;
341 spin_unlock(&inode->lock);
342 }
343
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)344 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
345 {
346 bool ret = false;
347
348 spin_lock(&inode->lock);
349 if (inode->logged_trans == generation &&
350 inode->last_sub_trans <= inode->last_log_commit &&
351 inode->last_sub_trans <= inode->root->last_log_commit)
352 ret = true;
353 spin_unlock(&inode->lock);
354 return ret;
355 }
356
357 struct btrfs_dio_private {
358 struct inode *inode;
359
360 /*
361 * Since DIO can use anonymous page, we cannot use page_offset() to
362 * grab the file offset, thus need a dedicated member for file offset.
363 */
364 u64 file_offset;
365 u64 disk_bytenr;
366 /* Used for bio::bi_size */
367 u32 bytes;
368
369 /*
370 * References to this structure. There is one reference per in-flight
371 * bio plus one while we're still setting up.
372 */
373 refcount_t refs;
374
375 /* dio_bio came from fs/direct-io.c */
376 struct bio *dio_bio;
377
378 /* Array of checksums */
379 u8 csums[];
380 };
381
382 /*
383 * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two
384 * separate u32s. These two functions convert between the two representations.
385 */
btrfs_inode_combine_flags(u32 flags,u32 ro_flags)386 static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags)
387 {
388 return (flags | ((u64)ro_flags << 32));
389 }
390
btrfs_inode_split_flags(u64 inode_item_flags,u32 * flags,u32 * ro_flags)391 static inline void btrfs_inode_split_flags(u64 inode_item_flags,
392 u32 *flags, u32 *ro_flags)
393 {
394 *flags = (u32)inode_item_flags;
395 *ro_flags = (u32)(inode_item_flags >> 32);
396 }
397
398 /* Array of bytes with variable length, hexadecimal format 0x1234 */
399 #define CSUM_FMT "0x%*phN"
400 #define CSUM_FMT_VALUE(size, bytes) size, bytes
401
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)402 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
403 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
404 {
405 struct btrfs_root *root = inode->root;
406 const u32 csum_size = root->fs_info->csum_size;
407
408 /* Output minus objectid, which is more meaningful */
409 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
410 btrfs_warn_rl(root->fs_info,
411 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
412 root->root_key.objectid, btrfs_ino(inode),
413 logical_start,
414 CSUM_FMT_VALUE(csum_size, csum),
415 CSUM_FMT_VALUE(csum_size, csum_expected),
416 mirror_num);
417 else
418 btrfs_warn_rl(root->fs_info,
419 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
420 root->root_key.objectid, btrfs_ino(inode),
421 logical_start,
422 CSUM_FMT_VALUE(csum_size, csum),
423 CSUM_FMT_VALUE(csum_size, csum_expected),
424 mirror_num);
425 }
426
427 #endif
428