1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 DECLARE_RWSEM(kernfs_rwsem);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
kernfs_active(struct kernfs_node * kn)27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_rwsem);
30 return atomic_read(&kn->active) >= 0;
31 }
32
kernfs_lockdep(struct kernfs_node * kn)33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 if (!kn)
45 return strlcpy(buf, "(null)", buflen);
46
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48 }
49
50 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52 {
53 size_t depth = 0;
54
55 while (to->parent && to != from) {
56 depth++;
57 to = to->parent;
58 }
59 return depth;
60 }
61
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
64 {
65 size_t da, db;
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67
68 if (ra != rb)
69 return NULL;
70
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
73
74 while (da > db) {
75 a = a->parent;
76 da--;
77 }
78 while (db > da) {
79 b = b->parent;
80 db--;
81 }
82
83 /* worst case b and a will be the same at root */
84 while (b != a) {
85 b = b->parent;
86 a = a->parent;
87 }
88
89 return a;
90 }
91
92 /**
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
99 *
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
102 * kn_from: /n1/n2/n3
103 * kn_to: /n1/n2/n3/n4/n5
104 * result: /n4/n5
105 *
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
109 * kn_to: /n1/n2/n5
110 * result: /../../n5
111 * OR
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
114 * result: /../..
115 *
116 * [3] when @kn_to is NULL result will be "(null)"
117 *
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
121 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
125 {
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
128 size_t depth_from, depth_to, len = 0;
129 int i, j;
130
131 if (!kn_to)
132 return strlcpy(buf, "(null)", buflen);
133
134 if (!kn_from)
135 kn_from = kernfs_root(kn_to)->kn;
136
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
139
140 if (!buf)
141 return -EINVAL;
142
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
145 return -EINVAL;
146
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
149
150 buf[0] = '\0';
151
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
155
156 /* Calculate how many bytes we need for the rest */
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
159 kn = kn->parent;
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
164 }
165
166 return len;
167 }
168
169 /**
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
174 *
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178 *
179 * Fills buffer with "(null)" if @kn is NULL.
180 *
181 * This function can be called from any context.
182 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184 {
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 return ret;
192 }
193
194 /**
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
200 *
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
204 * returned.
205 *
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
209 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
212 {
213 unsigned long flags;
214 int ret;
215
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 return ret;
220 }
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222
223 /**
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
226 *
227 * This function can be called from any context.
228 */
pr_cont_kernfs_name(struct kernfs_node * kn)229 void pr_cont_kernfs_name(struct kernfs_node *kn)
230 {
231 unsigned long flags;
232
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
234
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
237
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239 }
240
241 /**
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
244 *
245 * This function can be called from any context.
246 */
pr_cont_kernfs_path(struct kernfs_node * kn)247 void pr_cont_kernfs_path(struct kernfs_node *kn)
248 {
249 unsigned long flags;
250 int sz;
251
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
253
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
256 if (sz < 0) {
257 pr_cont("(error)");
258 goto out;
259 }
260
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
263 goto out;
264 }
265
266 pr_cont("%s", kernfs_pr_cont_buf);
267
268 out:
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270 }
271
272 /**
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
275 *
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
278 */
kernfs_get_parent(struct kernfs_node * kn)279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280 {
281 struct kernfs_node *parent;
282 unsigned long flags;
283
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
285 parent = kn->parent;
286 kernfs_get(parent);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288
289 return parent;
290 }
291
292 /**
293 * kernfs_name_hash
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
296 *
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
298 */
kernfs_name_hash(const char * name,const void * ns)299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
300 {
301 unsigned long hash = init_name_hash(ns);
302 unsigned int len = strlen(name);
303 while (len--)
304 hash = partial_name_hash(*name++, hash);
305 hash = end_name_hash(hash);
306 hash &= 0x7fffffffU;
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
308 if (hash < 2)
309 hash += 2;
310 if (hash >= INT_MAX)
311 hash = INT_MAX - 1;
312 return hash;
313 }
314
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
317 {
318 if (hash < kn->hash)
319 return -1;
320 if (hash > kn->hash)
321 return 1;
322 if (ns < kn->ns)
323 return -1;
324 if (ns > kn->ns)
325 return 1;
326 return strcmp(name, kn->name);
327 }
328
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
331 {
332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
333 }
334
335 /**
336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
337 * @kn: kernfs_node of interest
338 *
339 * Link @kn into its sibling rbtree which starts from
340 * @kn->parent->dir.children.
341 *
342 * Locking:
343 * kernfs_rwsem held exclusive
344 *
345 * RETURNS:
346 * 0 on susccess -EEXIST on failure.
347 */
kernfs_link_sibling(struct kernfs_node * kn)348 static int kernfs_link_sibling(struct kernfs_node *kn)
349 {
350 struct rb_node **node = &kn->parent->dir.children.rb_node;
351 struct rb_node *parent = NULL;
352
353 while (*node) {
354 struct kernfs_node *pos;
355 int result;
356
357 pos = rb_to_kn(*node);
358 parent = *node;
359 result = kernfs_sd_compare(kn, pos);
360 if (result < 0)
361 node = &pos->rb.rb_left;
362 else if (result > 0)
363 node = &pos->rb.rb_right;
364 else
365 return -EEXIST;
366 }
367
368 /* add new node and rebalance the tree */
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
371
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
375 kernfs_inc_rev(kn->parent);
376
377 return 0;
378 }
379
380 /**
381 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
382 * @kn: kernfs_node of interest
383 *
384 * Try to unlink @kn from its sibling rbtree which starts from
385 * kn->parent->dir.children. Returns %true if @kn was actually
386 * removed, %false if @kn wasn't on the rbtree.
387 *
388 * Locking:
389 * kernfs_rwsem held exclusive
390 */
kernfs_unlink_sibling(struct kernfs_node * kn)391 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
392 {
393 if (RB_EMPTY_NODE(&kn->rb))
394 return false;
395
396 if (kernfs_type(kn) == KERNFS_DIR)
397 kn->parent->dir.subdirs--;
398 kernfs_inc_rev(kn->parent);
399
400 rb_erase(&kn->rb, &kn->parent->dir.children);
401 RB_CLEAR_NODE(&kn->rb);
402 return true;
403 }
404
405 /**
406 * kernfs_get_active - get an active reference to kernfs_node
407 * @kn: kernfs_node to get an active reference to
408 *
409 * Get an active reference of @kn. This function is noop if @kn
410 * is NULL.
411 *
412 * RETURNS:
413 * Pointer to @kn on success, NULL on failure.
414 */
kernfs_get_active(struct kernfs_node * kn)415 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
416 {
417 if (unlikely(!kn))
418 return NULL;
419
420 if (!atomic_inc_unless_negative(&kn->active))
421 return NULL;
422
423 if (kernfs_lockdep(kn))
424 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
425 return kn;
426 }
427
428 /**
429 * kernfs_put_active - put an active reference to kernfs_node
430 * @kn: kernfs_node to put an active reference to
431 *
432 * Put an active reference to @kn. This function is noop if @kn
433 * is NULL.
434 */
kernfs_put_active(struct kernfs_node * kn)435 void kernfs_put_active(struct kernfs_node *kn)
436 {
437 int v;
438
439 if (unlikely(!kn))
440 return;
441
442 if (kernfs_lockdep(kn))
443 rwsem_release(&kn->dep_map, _RET_IP_);
444 v = atomic_dec_return(&kn->active);
445 if (likely(v != KN_DEACTIVATED_BIAS))
446 return;
447
448 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
449 }
450
451 /**
452 * kernfs_drain - drain kernfs_node
453 * @kn: kernfs_node to drain
454 *
455 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
456 * removers may invoke this function concurrently on @kn and all will
457 * return after draining is complete.
458 */
kernfs_drain(struct kernfs_node * kn)459 static void kernfs_drain(struct kernfs_node *kn)
460 __releases(&kernfs_rwsem) __acquires(&kernfs_rwsem)
461 {
462 struct kernfs_root *root = kernfs_root(kn);
463
464 lockdep_assert_held_write(&kernfs_rwsem);
465 WARN_ON_ONCE(kernfs_active(kn));
466
467 up_write(&kernfs_rwsem);
468
469 if (kernfs_lockdep(kn)) {
470 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
471 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
472 lock_contended(&kn->dep_map, _RET_IP_);
473 }
474
475 /* but everyone should wait for draining */
476 wait_event(root->deactivate_waitq,
477 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
478
479 if (kernfs_lockdep(kn)) {
480 lock_acquired(&kn->dep_map, _RET_IP_);
481 rwsem_release(&kn->dep_map, _RET_IP_);
482 }
483
484 kernfs_drain_open_files(kn);
485
486 down_write(&kernfs_rwsem);
487 }
488
489 /**
490 * kernfs_get - get a reference count on a kernfs_node
491 * @kn: the target kernfs_node
492 */
kernfs_get(struct kernfs_node * kn)493 void kernfs_get(struct kernfs_node *kn)
494 {
495 if (kn) {
496 WARN_ON(!atomic_read(&kn->count));
497 atomic_inc(&kn->count);
498 }
499 }
500 EXPORT_SYMBOL_GPL(kernfs_get);
501
502 /**
503 * kernfs_put - put a reference count on a kernfs_node
504 * @kn: the target kernfs_node
505 *
506 * Put a reference count of @kn and destroy it if it reached zero.
507 */
kernfs_put(struct kernfs_node * kn)508 void kernfs_put(struct kernfs_node *kn)
509 {
510 struct kernfs_node *parent;
511 struct kernfs_root *root;
512
513 if (!kn || !atomic_dec_and_test(&kn->count))
514 return;
515 root = kernfs_root(kn);
516 repeat:
517 /*
518 * Moving/renaming is always done while holding reference.
519 * kn->parent won't change beneath us.
520 */
521 parent = kn->parent;
522
523 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
524 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
525 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
526
527 if (kernfs_type(kn) == KERNFS_LINK)
528 kernfs_put(kn->symlink.target_kn);
529
530 kfree_const(kn->name);
531
532 if (kn->iattr) {
533 simple_xattrs_free(&kn->iattr->xattrs);
534 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
535 }
536 spin_lock(&kernfs_idr_lock);
537 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
538 spin_unlock(&kernfs_idr_lock);
539 kmem_cache_free(kernfs_node_cache, kn);
540
541 kn = parent;
542 if (kn) {
543 if (atomic_dec_and_test(&kn->count))
544 goto repeat;
545 } else {
546 /* just released the root kn, free @root too */
547 idr_destroy(&root->ino_idr);
548 kfree(root);
549 }
550 }
551 EXPORT_SYMBOL_GPL(kernfs_put);
552
553 /**
554 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
555 * @dentry: the dentry in question
556 *
557 * Return the kernfs_node associated with @dentry. If @dentry is not a
558 * kernfs one, %NULL is returned.
559 *
560 * While the returned kernfs_node will stay accessible as long as @dentry
561 * is accessible, the returned node can be in any state and the caller is
562 * fully responsible for determining what's accessible.
563 */
kernfs_node_from_dentry(struct dentry * dentry)564 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
565 {
566 if (dentry->d_sb->s_op == &kernfs_sops)
567 return kernfs_dentry_node(dentry);
568 return NULL;
569 }
570
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)571 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
572 struct kernfs_node *parent,
573 const char *name, umode_t mode,
574 kuid_t uid, kgid_t gid,
575 unsigned flags)
576 {
577 struct kernfs_node *kn;
578 u32 id_highbits;
579 int ret;
580
581 name = kstrdup_const(name, GFP_KERNEL);
582 if (!name)
583 return NULL;
584
585 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
586 if (!kn)
587 goto err_out1;
588
589 idr_preload(GFP_KERNEL);
590 spin_lock(&kernfs_idr_lock);
591 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
592 if (ret >= 0 && ret < root->last_id_lowbits)
593 root->id_highbits++;
594 id_highbits = root->id_highbits;
595 root->last_id_lowbits = ret;
596 spin_unlock(&kernfs_idr_lock);
597 idr_preload_end();
598 if (ret < 0)
599 goto err_out2;
600
601 kn->id = (u64)id_highbits << 32 | ret;
602
603 atomic_set(&kn->count, 1);
604 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
605 RB_CLEAR_NODE(&kn->rb);
606
607 kn->name = name;
608 kn->mode = mode;
609 kn->flags = flags;
610
611 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
612 struct iattr iattr = {
613 .ia_valid = ATTR_UID | ATTR_GID,
614 .ia_uid = uid,
615 .ia_gid = gid,
616 };
617
618 ret = __kernfs_setattr(kn, &iattr);
619 if (ret < 0)
620 goto err_out3;
621 }
622
623 if (parent) {
624 ret = security_kernfs_init_security(parent, kn);
625 if (ret)
626 goto err_out3;
627 }
628
629 return kn;
630
631 err_out3:
632 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
633 err_out2:
634 kmem_cache_free(kernfs_node_cache, kn);
635 err_out1:
636 kfree_const(name);
637 return NULL;
638 }
639
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)640 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
641 const char *name, umode_t mode,
642 kuid_t uid, kgid_t gid,
643 unsigned flags)
644 {
645 struct kernfs_node *kn;
646
647 kn = __kernfs_new_node(kernfs_root(parent), parent,
648 name, mode, uid, gid, flags);
649 if (kn) {
650 kernfs_get(parent);
651 kn->parent = parent;
652 }
653 return kn;
654 }
655
656 /*
657 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
658 * @root: the kernfs root
659 * @id: the target node id
660 *
661 * @id's lower 32bits encode ino and upper gen. If the gen portion is
662 * zero, all generations are matched.
663 *
664 * RETURNS:
665 * NULL on failure. Return a kernfs node with reference counter incremented
666 */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)667 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
668 u64 id)
669 {
670 struct kernfs_node *kn;
671 ino_t ino = kernfs_id_ino(id);
672 u32 gen = kernfs_id_gen(id);
673
674 spin_lock(&kernfs_idr_lock);
675
676 kn = idr_find(&root->ino_idr, (u32)ino);
677 if (!kn)
678 goto err_unlock;
679
680 if (sizeof(ino_t) >= sizeof(u64)) {
681 /* we looked up with the low 32bits, compare the whole */
682 if (kernfs_ino(kn) != ino)
683 goto err_unlock;
684 } else {
685 /* 0 matches all generations */
686 if (unlikely(gen && kernfs_gen(kn) != gen))
687 goto err_unlock;
688 }
689
690 /*
691 * ACTIVATED is protected with kernfs_mutex but it was clear when
692 * @kn was added to idr and we just wanna see it set. No need to
693 * grab kernfs_mutex.
694 */
695 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
696 !atomic_inc_not_zero(&kn->count)))
697 goto err_unlock;
698
699 spin_unlock(&kernfs_idr_lock);
700 return kn;
701 err_unlock:
702 spin_unlock(&kernfs_idr_lock);
703 return NULL;
704 }
705
706 /**
707 * kernfs_add_one - add kernfs_node to parent without warning
708 * @kn: kernfs_node to be added
709 *
710 * The caller must already have initialized @kn->parent. This
711 * function increments nlink of the parent's inode if @kn is a
712 * directory and link into the children list of the parent.
713 *
714 * RETURNS:
715 * 0 on success, -EEXIST if entry with the given name already
716 * exists.
717 */
kernfs_add_one(struct kernfs_node * kn)718 int kernfs_add_one(struct kernfs_node *kn)
719 {
720 struct kernfs_node *parent = kn->parent;
721 struct kernfs_iattrs *ps_iattr;
722 bool has_ns;
723 int ret;
724
725 down_write(&kernfs_rwsem);
726
727 ret = -EINVAL;
728 has_ns = kernfs_ns_enabled(parent);
729 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
730 has_ns ? "required" : "invalid", parent->name, kn->name))
731 goto out_unlock;
732
733 if (kernfs_type(parent) != KERNFS_DIR)
734 goto out_unlock;
735
736 ret = -ENOENT;
737 if (parent->flags & KERNFS_EMPTY_DIR)
738 goto out_unlock;
739
740 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
741 goto out_unlock;
742
743 kn->hash = kernfs_name_hash(kn->name, kn->ns);
744
745 ret = kernfs_link_sibling(kn);
746 if (ret)
747 goto out_unlock;
748
749 /* Update timestamps on the parent */
750 ps_iattr = parent->iattr;
751 if (ps_iattr) {
752 ktime_get_real_ts64(&ps_iattr->ia_ctime);
753 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
754 }
755
756 up_write(&kernfs_rwsem);
757
758 /*
759 * Activate the new node unless CREATE_DEACTIVATED is requested.
760 * If not activated here, the kernfs user is responsible for
761 * activating the node with kernfs_activate(). A node which hasn't
762 * been activated is not visible to userland and its removal won't
763 * trigger deactivation.
764 */
765 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
766 kernfs_activate(kn);
767 return 0;
768
769 out_unlock:
770 up_write(&kernfs_rwsem);
771 return ret;
772 }
773
774 /**
775 * kernfs_find_ns - find kernfs_node with the given name
776 * @parent: kernfs_node to search under
777 * @name: name to look for
778 * @ns: the namespace tag to use
779 *
780 * Look for kernfs_node with name @name under @parent. Returns pointer to
781 * the found kernfs_node on success, %NULL on failure.
782 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)783 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
784 const unsigned char *name,
785 const void *ns)
786 {
787 struct rb_node *node = parent->dir.children.rb_node;
788 bool has_ns = kernfs_ns_enabled(parent);
789 unsigned int hash;
790
791 lockdep_assert_held(&kernfs_rwsem);
792
793 if (has_ns != (bool)ns) {
794 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
795 has_ns ? "required" : "invalid", parent->name, name);
796 return NULL;
797 }
798
799 hash = kernfs_name_hash(name, ns);
800 while (node) {
801 struct kernfs_node *kn;
802 int result;
803
804 kn = rb_to_kn(node);
805 result = kernfs_name_compare(hash, name, ns, kn);
806 if (result < 0)
807 node = node->rb_left;
808 else if (result > 0)
809 node = node->rb_right;
810 else
811 return kn;
812 }
813 return NULL;
814 }
815
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)816 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
817 const unsigned char *path,
818 const void *ns)
819 {
820 size_t len;
821 char *p, *name;
822
823 lockdep_assert_held_read(&kernfs_rwsem);
824
825 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
826 spin_lock_irq(&kernfs_rename_lock);
827
828 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
829
830 if (len >= sizeof(kernfs_pr_cont_buf)) {
831 spin_unlock_irq(&kernfs_rename_lock);
832 return NULL;
833 }
834
835 p = kernfs_pr_cont_buf;
836
837 while ((name = strsep(&p, "/")) && parent) {
838 if (*name == '\0')
839 continue;
840 parent = kernfs_find_ns(parent, name, ns);
841 }
842
843 spin_unlock_irq(&kernfs_rename_lock);
844
845 return parent;
846 }
847
848 /**
849 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
850 * @parent: kernfs_node to search under
851 * @name: name to look for
852 * @ns: the namespace tag to use
853 *
854 * Look for kernfs_node with name @name under @parent and get a reference
855 * if found. This function may sleep and returns pointer to the found
856 * kernfs_node on success, %NULL on failure.
857 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)858 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
859 const char *name, const void *ns)
860 {
861 struct kernfs_node *kn;
862
863 down_read(&kernfs_rwsem);
864 kn = kernfs_find_ns(parent, name, ns);
865 kernfs_get(kn);
866 up_read(&kernfs_rwsem);
867
868 return kn;
869 }
870 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
871
872 /**
873 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
874 * @parent: kernfs_node to search under
875 * @path: path to look for
876 * @ns: the namespace tag to use
877 *
878 * Look for kernfs_node with path @path under @parent and get a reference
879 * if found. This function may sleep and returns pointer to the found
880 * kernfs_node on success, %NULL on failure.
881 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)882 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
883 const char *path, const void *ns)
884 {
885 struct kernfs_node *kn;
886
887 down_read(&kernfs_rwsem);
888 kn = kernfs_walk_ns(parent, path, ns);
889 kernfs_get(kn);
890 up_read(&kernfs_rwsem);
891
892 return kn;
893 }
894
895 /**
896 * kernfs_create_root - create a new kernfs hierarchy
897 * @scops: optional syscall operations for the hierarchy
898 * @flags: KERNFS_ROOT_* flags
899 * @priv: opaque data associated with the new directory
900 *
901 * Returns the root of the new hierarchy on success, ERR_PTR() value on
902 * failure.
903 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)904 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
905 unsigned int flags, void *priv)
906 {
907 struct kernfs_root *root;
908 struct kernfs_node *kn;
909
910 root = kzalloc(sizeof(*root), GFP_KERNEL);
911 if (!root)
912 return ERR_PTR(-ENOMEM);
913
914 idr_init(&root->ino_idr);
915 INIT_LIST_HEAD(&root->supers);
916
917 /*
918 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
919 * High bits generation. The starting value for both ino and
920 * genenration is 1. Initialize upper 32bit allocation
921 * accordingly.
922 */
923 if (sizeof(ino_t) >= sizeof(u64))
924 root->id_highbits = 0;
925 else
926 root->id_highbits = 1;
927
928 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
929 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
930 KERNFS_DIR);
931 if (!kn) {
932 idr_destroy(&root->ino_idr);
933 kfree(root);
934 return ERR_PTR(-ENOMEM);
935 }
936
937 kn->priv = priv;
938 kn->dir.root = root;
939
940 root->syscall_ops = scops;
941 root->flags = flags;
942 root->kn = kn;
943 init_waitqueue_head(&root->deactivate_waitq);
944
945 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
946 kernfs_activate(kn);
947
948 return root;
949 }
950
951 /**
952 * kernfs_destroy_root - destroy a kernfs hierarchy
953 * @root: root of the hierarchy to destroy
954 *
955 * Destroy the hierarchy anchored at @root by removing all existing
956 * directories and destroying @root.
957 */
kernfs_destroy_root(struct kernfs_root * root)958 void kernfs_destroy_root(struct kernfs_root *root)
959 {
960 kernfs_remove(root->kn); /* will also free @root */
961 }
962
963 /**
964 * kernfs_create_dir_ns - create a directory
965 * @parent: parent in which to create a new directory
966 * @name: name of the new directory
967 * @mode: mode of the new directory
968 * @uid: uid of the new directory
969 * @gid: gid of the new directory
970 * @priv: opaque data associated with the new directory
971 * @ns: optional namespace tag of the directory
972 *
973 * Returns the created node on success, ERR_PTR() value on failure.
974 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)975 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
976 const char *name, umode_t mode,
977 kuid_t uid, kgid_t gid,
978 void *priv, const void *ns)
979 {
980 struct kernfs_node *kn;
981 int rc;
982
983 /* allocate */
984 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
985 uid, gid, KERNFS_DIR);
986 if (!kn)
987 return ERR_PTR(-ENOMEM);
988
989 kn->dir.root = parent->dir.root;
990 kn->ns = ns;
991 kn->priv = priv;
992
993 /* link in */
994 rc = kernfs_add_one(kn);
995 if (!rc)
996 return kn;
997
998 kernfs_put(kn);
999 return ERR_PTR(rc);
1000 }
1001
1002 /**
1003 * kernfs_create_empty_dir - create an always empty directory
1004 * @parent: parent in which to create a new directory
1005 * @name: name of the new directory
1006 *
1007 * Returns the created node on success, ERR_PTR() value on failure.
1008 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1009 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1010 const char *name)
1011 {
1012 struct kernfs_node *kn;
1013 int rc;
1014
1015 /* allocate */
1016 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1017 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1018 if (!kn)
1019 return ERR_PTR(-ENOMEM);
1020
1021 kn->flags |= KERNFS_EMPTY_DIR;
1022 kn->dir.root = parent->dir.root;
1023 kn->ns = NULL;
1024 kn->priv = NULL;
1025
1026 /* link in */
1027 rc = kernfs_add_one(kn);
1028 if (!rc)
1029 return kn;
1030
1031 kernfs_put(kn);
1032 return ERR_PTR(rc);
1033 }
1034
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)1035 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1036 {
1037 struct kernfs_node *kn;
1038
1039 if (flags & LOOKUP_RCU)
1040 return -ECHILD;
1041
1042 /* Negative hashed dentry? */
1043 if (d_really_is_negative(dentry)) {
1044 struct kernfs_node *parent;
1045
1046 /* If the kernfs parent node has changed discard and
1047 * proceed to ->lookup.
1048 */
1049 down_read(&kernfs_rwsem);
1050 spin_lock(&dentry->d_lock);
1051 parent = kernfs_dentry_node(dentry->d_parent);
1052 if (parent) {
1053 if (kernfs_dir_changed(parent, dentry)) {
1054 spin_unlock(&dentry->d_lock);
1055 up_read(&kernfs_rwsem);
1056 return 0;
1057 }
1058 }
1059 spin_unlock(&dentry->d_lock);
1060 up_read(&kernfs_rwsem);
1061
1062 /* The kernfs parent node hasn't changed, leave the
1063 * dentry negative and return success.
1064 */
1065 return 1;
1066 }
1067
1068 kn = kernfs_dentry_node(dentry);
1069 down_read(&kernfs_rwsem);
1070
1071 /* The kernfs node has been deactivated */
1072 if (!kernfs_active(kn))
1073 goto out_bad;
1074
1075 /* The kernfs node has been moved? */
1076 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1077 goto out_bad;
1078
1079 /* The kernfs node has been renamed */
1080 if (strcmp(dentry->d_name.name, kn->name) != 0)
1081 goto out_bad;
1082
1083 /* The kernfs node has been moved to a different namespace */
1084 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1085 kernfs_info(dentry->d_sb)->ns != kn->ns)
1086 goto out_bad;
1087
1088 up_read(&kernfs_rwsem);
1089 return 1;
1090 out_bad:
1091 up_read(&kernfs_rwsem);
1092 return 0;
1093 }
1094
1095 const struct dentry_operations kernfs_dops = {
1096 .d_revalidate = kernfs_dop_revalidate,
1097 };
1098
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1099 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1100 struct dentry *dentry,
1101 unsigned int flags)
1102 {
1103 struct kernfs_node *parent = dir->i_private;
1104 struct kernfs_node *kn;
1105 struct inode *inode = NULL;
1106 const void *ns = NULL;
1107
1108 down_read(&kernfs_rwsem);
1109 if (kernfs_ns_enabled(parent))
1110 ns = kernfs_info(dir->i_sb)->ns;
1111
1112 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1113 /* attach dentry and inode */
1114 if (kn) {
1115 /* Inactive nodes are invisible to the VFS so don't
1116 * create a negative.
1117 */
1118 if (!kernfs_active(kn)) {
1119 up_read(&kernfs_rwsem);
1120 return NULL;
1121 }
1122 inode = kernfs_get_inode(dir->i_sb, kn);
1123 if (!inode)
1124 inode = ERR_PTR(-ENOMEM);
1125 }
1126 /*
1127 * Needed for negative dentry validation.
1128 * The negative dentry can be created in kernfs_iop_lookup()
1129 * or transforms from positive dentry in dentry_unlink_inode()
1130 * called from vfs_rmdir().
1131 */
1132 if (!IS_ERR(inode))
1133 kernfs_set_rev(parent, dentry);
1134 up_read(&kernfs_rwsem);
1135
1136 /* instantiate and hash (possibly negative) dentry */
1137 return d_splice_alias(inode, dentry);
1138 }
1139
kernfs_iop_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)1140 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1141 struct inode *dir, struct dentry *dentry,
1142 umode_t mode)
1143 {
1144 struct kernfs_node *parent = dir->i_private;
1145 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1146 int ret;
1147
1148 if (!scops || !scops->mkdir)
1149 return -EPERM;
1150
1151 if (!kernfs_get_active(parent))
1152 return -ENODEV;
1153
1154 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1155
1156 kernfs_put_active(parent);
1157 return ret;
1158 }
1159
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1160 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1161 {
1162 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1163 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1164 int ret;
1165
1166 if (!scops || !scops->rmdir)
1167 return -EPERM;
1168
1169 if (!kernfs_get_active(kn))
1170 return -ENODEV;
1171
1172 ret = scops->rmdir(kn);
1173
1174 kernfs_put_active(kn);
1175 return ret;
1176 }
1177
kernfs_iop_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1178 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1179 struct inode *old_dir, struct dentry *old_dentry,
1180 struct inode *new_dir, struct dentry *new_dentry,
1181 unsigned int flags)
1182 {
1183 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1184 struct kernfs_node *new_parent = new_dir->i_private;
1185 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1186 int ret;
1187
1188 if (flags)
1189 return -EINVAL;
1190
1191 if (!scops || !scops->rename)
1192 return -EPERM;
1193
1194 if (!kernfs_get_active(kn))
1195 return -ENODEV;
1196
1197 if (!kernfs_get_active(new_parent)) {
1198 kernfs_put_active(kn);
1199 return -ENODEV;
1200 }
1201
1202 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1203
1204 kernfs_put_active(new_parent);
1205 kernfs_put_active(kn);
1206 return ret;
1207 }
1208
1209 const struct inode_operations kernfs_dir_iops = {
1210 .lookup = kernfs_iop_lookup,
1211 .permission = kernfs_iop_permission,
1212 .setattr = kernfs_iop_setattr,
1213 .getattr = kernfs_iop_getattr,
1214 .listxattr = kernfs_iop_listxattr,
1215
1216 .mkdir = kernfs_iop_mkdir,
1217 .rmdir = kernfs_iop_rmdir,
1218 .rename = kernfs_iop_rename,
1219 };
1220
kernfs_leftmost_descendant(struct kernfs_node * pos)1221 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1222 {
1223 struct kernfs_node *last;
1224
1225 while (true) {
1226 struct rb_node *rbn;
1227
1228 last = pos;
1229
1230 if (kernfs_type(pos) != KERNFS_DIR)
1231 break;
1232
1233 rbn = rb_first(&pos->dir.children);
1234 if (!rbn)
1235 break;
1236
1237 pos = rb_to_kn(rbn);
1238 }
1239
1240 return last;
1241 }
1242
1243 /**
1244 * kernfs_next_descendant_post - find the next descendant for post-order walk
1245 * @pos: the current position (%NULL to initiate traversal)
1246 * @root: kernfs_node whose descendants to walk
1247 *
1248 * Find the next descendant to visit for post-order traversal of @root's
1249 * descendants. @root is included in the iteration and the last node to be
1250 * visited.
1251 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1252 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1253 struct kernfs_node *root)
1254 {
1255 struct rb_node *rbn;
1256
1257 lockdep_assert_held_write(&kernfs_rwsem);
1258
1259 /* if first iteration, visit leftmost descendant which may be root */
1260 if (!pos)
1261 return kernfs_leftmost_descendant(root);
1262
1263 /* if we visited @root, we're done */
1264 if (pos == root)
1265 return NULL;
1266
1267 /* if there's an unvisited sibling, visit its leftmost descendant */
1268 rbn = rb_next(&pos->rb);
1269 if (rbn)
1270 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1271
1272 /* no sibling left, visit parent */
1273 return pos->parent;
1274 }
1275
1276 /**
1277 * kernfs_activate - activate a node which started deactivated
1278 * @kn: kernfs_node whose subtree is to be activated
1279 *
1280 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1281 * needs to be explicitly activated. A node which hasn't been activated
1282 * isn't visible to userland and deactivation is skipped during its
1283 * removal. This is useful to construct atomic init sequences where
1284 * creation of multiple nodes should either succeed or fail atomically.
1285 *
1286 * The caller is responsible for ensuring that this function is not called
1287 * after kernfs_remove*() is invoked on @kn.
1288 */
kernfs_activate(struct kernfs_node * kn)1289 void kernfs_activate(struct kernfs_node *kn)
1290 {
1291 struct kernfs_node *pos;
1292
1293 down_write(&kernfs_rwsem);
1294
1295 pos = NULL;
1296 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1297 if (pos->flags & KERNFS_ACTIVATED)
1298 continue;
1299
1300 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1301 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1302
1303 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1304 pos->flags |= KERNFS_ACTIVATED;
1305 }
1306
1307 up_write(&kernfs_rwsem);
1308 }
1309
__kernfs_remove(struct kernfs_node * kn)1310 static void __kernfs_remove(struct kernfs_node *kn)
1311 {
1312 struct kernfs_node *pos;
1313
1314 lockdep_assert_held_write(&kernfs_rwsem);
1315
1316 /*
1317 * Short-circuit if non-root @kn has already finished removal.
1318 * This is for kernfs_remove_self() which plays with active ref
1319 * after removal.
1320 */
1321 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1322 return;
1323
1324 pr_debug("kernfs %s: removing\n", kn->name);
1325
1326 /* prevent any new usage under @kn by deactivating all nodes */
1327 pos = NULL;
1328 while ((pos = kernfs_next_descendant_post(pos, kn)))
1329 if (kernfs_active(pos))
1330 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1331
1332 /* deactivate and unlink the subtree node-by-node */
1333 do {
1334 pos = kernfs_leftmost_descendant(kn);
1335
1336 /*
1337 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's
1338 * base ref could have been put by someone else by the time
1339 * the function returns. Make sure it doesn't go away
1340 * underneath us.
1341 */
1342 kernfs_get(pos);
1343
1344 /*
1345 * Drain iff @kn was activated. This avoids draining and
1346 * its lockdep annotations for nodes which have never been
1347 * activated and allows embedding kernfs_remove() in create
1348 * error paths without worrying about draining.
1349 */
1350 if (kn->flags & KERNFS_ACTIVATED)
1351 kernfs_drain(pos);
1352 else
1353 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1354
1355 /*
1356 * kernfs_unlink_sibling() succeeds once per node. Use it
1357 * to decide who's responsible for cleanups.
1358 */
1359 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1360 struct kernfs_iattrs *ps_iattr =
1361 pos->parent ? pos->parent->iattr : NULL;
1362
1363 /* update timestamps on the parent */
1364 if (ps_iattr) {
1365 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1366 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1367 }
1368
1369 kernfs_put(pos);
1370 }
1371
1372 kernfs_put(pos);
1373 } while (pos != kn);
1374 }
1375
1376 /**
1377 * kernfs_remove - remove a kernfs_node recursively
1378 * @kn: the kernfs_node to remove
1379 *
1380 * Remove @kn along with all its subdirectories and files.
1381 */
kernfs_remove(struct kernfs_node * kn)1382 void kernfs_remove(struct kernfs_node *kn)
1383 {
1384 down_write(&kernfs_rwsem);
1385 __kernfs_remove(kn);
1386 up_write(&kernfs_rwsem);
1387 }
1388
1389 /**
1390 * kernfs_break_active_protection - break out of active protection
1391 * @kn: the self kernfs_node
1392 *
1393 * The caller must be running off of a kernfs operation which is invoked
1394 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1395 * this function must also be matched with an invocation of
1396 * kernfs_unbreak_active_protection().
1397 *
1398 * This function releases the active reference of @kn the caller is
1399 * holding. Once this function is called, @kn may be removed at any point
1400 * and the caller is solely responsible for ensuring that the objects it
1401 * dereferences are accessible.
1402 */
kernfs_break_active_protection(struct kernfs_node * kn)1403 void kernfs_break_active_protection(struct kernfs_node *kn)
1404 {
1405 /*
1406 * Take out ourself out of the active ref dependency chain. If
1407 * we're called without an active ref, lockdep will complain.
1408 */
1409 kernfs_put_active(kn);
1410 }
1411
1412 /**
1413 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1414 * @kn: the self kernfs_node
1415 *
1416 * If kernfs_break_active_protection() was called, this function must be
1417 * invoked before finishing the kernfs operation. Note that while this
1418 * function restores the active reference, it doesn't and can't actually
1419 * restore the active protection - @kn may already or be in the process of
1420 * being removed. Once kernfs_break_active_protection() is invoked, that
1421 * protection is irreversibly gone for the kernfs operation instance.
1422 *
1423 * While this function may be called at any point after
1424 * kernfs_break_active_protection() is invoked, its most useful location
1425 * would be right before the enclosing kernfs operation returns.
1426 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1427 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1428 {
1429 /*
1430 * @kn->active could be in any state; however, the increment we do
1431 * here will be undone as soon as the enclosing kernfs operation
1432 * finishes and this temporary bump can't break anything. If @kn
1433 * is alive, nothing changes. If @kn is being deactivated, the
1434 * soon-to-follow put will either finish deactivation or restore
1435 * deactivated state. If @kn is already removed, the temporary
1436 * bump is guaranteed to be gone before @kn is released.
1437 */
1438 atomic_inc(&kn->active);
1439 if (kernfs_lockdep(kn))
1440 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1441 }
1442
1443 /**
1444 * kernfs_remove_self - remove a kernfs_node from its own method
1445 * @kn: the self kernfs_node to remove
1446 *
1447 * The caller must be running off of a kernfs operation which is invoked
1448 * with an active reference - e.g. one of kernfs_ops. This can be used to
1449 * implement a file operation which deletes itself.
1450 *
1451 * For example, the "delete" file for a sysfs device directory can be
1452 * implemented by invoking kernfs_remove_self() on the "delete" file
1453 * itself. This function breaks the circular dependency of trying to
1454 * deactivate self while holding an active ref itself. It isn't necessary
1455 * to modify the usual removal path to use kernfs_remove_self(). The
1456 * "delete" implementation can simply invoke kernfs_remove_self() on self
1457 * before proceeding with the usual removal path. kernfs will ignore later
1458 * kernfs_remove() on self.
1459 *
1460 * kernfs_remove_self() can be called multiple times concurrently on the
1461 * same kernfs_node. Only the first one actually performs removal and
1462 * returns %true. All others will wait until the kernfs operation which
1463 * won self-removal finishes and return %false. Note that the losers wait
1464 * for the completion of not only the winning kernfs_remove_self() but also
1465 * the whole kernfs_ops which won the arbitration. This can be used to
1466 * guarantee, for example, all concurrent writes to a "delete" file to
1467 * finish only after the whole operation is complete.
1468 */
kernfs_remove_self(struct kernfs_node * kn)1469 bool kernfs_remove_self(struct kernfs_node *kn)
1470 {
1471 bool ret;
1472
1473 down_write(&kernfs_rwsem);
1474 kernfs_break_active_protection(kn);
1475
1476 /*
1477 * SUICIDAL is used to arbitrate among competing invocations. Only
1478 * the first one will actually perform removal. When the removal
1479 * is complete, SUICIDED is set and the active ref is restored
1480 * while kernfs_rwsem for held exclusive. The ones which lost
1481 * arbitration waits for SUICIDED && drained which can happen only
1482 * after the enclosing kernfs operation which executed the winning
1483 * instance of kernfs_remove_self() finished.
1484 */
1485 if (!(kn->flags & KERNFS_SUICIDAL)) {
1486 kn->flags |= KERNFS_SUICIDAL;
1487 __kernfs_remove(kn);
1488 kn->flags |= KERNFS_SUICIDED;
1489 ret = true;
1490 } else {
1491 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1492 DEFINE_WAIT(wait);
1493
1494 while (true) {
1495 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1496
1497 if ((kn->flags & KERNFS_SUICIDED) &&
1498 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1499 break;
1500
1501 up_write(&kernfs_rwsem);
1502 schedule();
1503 down_write(&kernfs_rwsem);
1504 }
1505 finish_wait(waitq, &wait);
1506 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1507 ret = false;
1508 }
1509
1510 /*
1511 * This must be done while kernfs_rwsem held exclusive; otherwise,
1512 * waiting for SUICIDED && deactivated could finish prematurely.
1513 */
1514 kernfs_unbreak_active_protection(kn);
1515
1516 up_write(&kernfs_rwsem);
1517 return ret;
1518 }
1519
1520 /**
1521 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1522 * @parent: parent of the target
1523 * @name: name of the kernfs_node to remove
1524 * @ns: namespace tag of the kernfs_node to remove
1525 *
1526 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1527 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1528 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1529 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1530 const void *ns)
1531 {
1532 struct kernfs_node *kn;
1533
1534 if (!parent) {
1535 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1536 name);
1537 return -ENOENT;
1538 }
1539
1540 down_write(&kernfs_rwsem);
1541
1542 kn = kernfs_find_ns(parent, name, ns);
1543 if (kn)
1544 __kernfs_remove(kn);
1545
1546 up_write(&kernfs_rwsem);
1547
1548 if (kn)
1549 return 0;
1550 else
1551 return -ENOENT;
1552 }
1553
1554 /**
1555 * kernfs_rename_ns - move and rename a kernfs_node
1556 * @kn: target node
1557 * @new_parent: new parent to put @sd under
1558 * @new_name: new name
1559 * @new_ns: new namespace tag
1560 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1561 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1562 const char *new_name, const void *new_ns)
1563 {
1564 struct kernfs_node *old_parent;
1565 const char *old_name = NULL;
1566 int error;
1567
1568 /* can't move or rename root */
1569 if (!kn->parent)
1570 return -EINVAL;
1571
1572 down_write(&kernfs_rwsem);
1573
1574 error = -ENOENT;
1575 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1576 (new_parent->flags & KERNFS_EMPTY_DIR))
1577 goto out;
1578
1579 error = 0;
1580 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1581 (strcmp(kn->name, new_name) == 0))
1582 goto out; /* nothing to rename */
1583
1584 error = -EEXIST;
1585 if (kernfs_find_ns(new_parent, new_name, new_ns))
1586 goto out;
1587
1588 /* rename kernfs_node */
1589 if (strcmp(kn->name, new_name) != 0) {
1590 error = -ENOMEM;
1591 new_name = kstrdup_const(new_name, GFP_KERNEL);
1592 if (!new_name)
1593 goto out;
1594 } else {
1595 new_name = NULL;
1596 }
1597
1598 /*
1599 * Move to the appropriate place in the appropriate directories rbtree.
1600 */
1601 kernfs_unlink_sibling(kn);
1602 kernfs_get(new_parent);
1603
1604 /* rename_lock protects ->parent and ->name accessors */
1605 spin_lock_irq(&kernfs_rename_lock);
1606
1607 old_parent = kn->parent;
1608 kn->parent = new_parent;
1609
1610 kn->ns = new_ns;
1611 if (new_name) {
1612 old_name = kn->name;
1613 kn->name = new_name;
1614 }
1615
1616 spin_unlock_irq(&kernfs_rename_lock);
1617
1618 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1619 kernfs_link_sibling(kn);
1620
1621 kernfs_put(old_parent);
1622 kfree_const(old_name);
1623
1624 error = 0;
1625 out:
1626 up_write(&kernfs_rwsem);
1627 return error;
1628 }
1629
1630 /* Relationship between mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1631 static inline unsigned char dt_type(struct kernfs_node *kn)
1632 {
1633 return (kn->mode >> 12) & 15;
1634 }
1635
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1636 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1637 {
1638 kernfs_put(filp->private_data);
1639 return 0;
1640 }
1641
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1642 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1643 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1644 {
1645 if (pos) {
1646 int valid = kernfs_active(pos) &&
1647 pos->parent == parent && hash == pos->hash;
1648 kernfs_put(pos);
1649 if (!valid)
1650 pos = NULL;
1651 }
1652 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1653 struct rb_node *node = parent->dir.children.rb_node;
1654 while (node) {
1655 pos = rb_to_kn(node);
1656
1657 if (hash < pos->hash)
1658 node = node->rb_left;
1659 else if (hash > pos->hash)
1660 node = node->rb_right;
1661 else
1662 break;
1663 }
1664 }
1665 /* Skip over entries which are dying/dead or in the wrong namespace */
1666 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1667 struct rb_node *node = rb_next(&pos->rb);
1668 if (!node)
1669 pos = NULL;
1670 else
1671 pos = rb_to_kn(node);
1672 }
1673 return pos;
1674 }
1675
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1676 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1677 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1678 {
1679 pos = kernfs_dir_pos(ns, parent, ino, pos);
1680 if (pos) {
1681 do {
1682 struct rb_node *node = rb_next(&pos->rb);
1683 if (!node)
1684 pos = NULL;
1685 else
1686 pos = rb_to_kn(node);
1687 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1688 }
1689 return pos;
1690 }
1691
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1692 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1693 {
1694 struct dentry *dentry = file->f_path.dentry;
1695 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1696 struct kernfs_node *pos = file->private_data;
1697 const void *ns = NULL;
1698
1699 if (!dir_emit_dots(file, ctx))
1700 return 0;
1701 down_read(&kernfs_rwsem);
1702
1703 if (kernfs_ns_enabled(parent))
1704 ns = kernfs_info(dentry->d_sb)->ns;
1705
1706 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1707 pos;
1708 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1709 const char *name = pos->name;
1710 unsigned int type = dt_type(pos);
1711 int len = strlen(name);
1712 ino_t ino = kernfs_ino(pos);
1713
1714 ctx->pos = pos->hash;
1715 file->private_data = pos;
1716 kernfs_get(pos);
1717
1718 up_read(&kernfs_rwsem);
1719 if (!dir_emit(ctx, name, len, ino, type))
1720 return 0;
1721 down_read(&kernfs_rwsem);
1722 }
1723 up_read(&kernfs_rwsem);
1724 file->private_data = NULL;
1725 ctx->pos = INT_MAX;
1726 return 0;
1727 }
1728
1729 const struct file_operations kernfs_dir_fops = {
1730 .read = generic_read_dir,
1731 .iterate_shared = kernfs_fop_readdir,
1732 .release = kernfs_dir_fop_release,
1733 .llseek = generic_file_llseek,
1734 };
1735