1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/secretmem.h>
27
28 #include "internal.h"
29
can_do_mlock(void)30 bool can_do_mlock(void)
31 {
32 if (rlimit(RLIMIT_MEMLOCK) != 0)
33 return true;
34 if (capable(CAP_IPC_LOCK))
35 return true;
36 return false;
37 }
38 EXPORT_SYMBOL(can_do_mlock);
39
40 /*
41 * Mlocked pages are marked with PageMlocked() flag for efficient testing
42 * in vmscan and, possibly, the fault path; and to support semi-accurate
43 * statistics.
44 *
45 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
46 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
47 * The unevictable list is an LRU sibling list to the [in]active lists.
48 * PageUnevictable is set to indicate the unevictable state.
49 *
50 * When lazy mlocking via vmscan, it is important to ensure that the
51 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
52 * may have mlocked a page that is being munlocked. So lazy mlock must take
53 * the mmap_lock for read, and verify that the vma really is locked
54 * (see mm/rmap.c).
55 */
56
57 /*
58 * LRU accounting for clear_page_mlock()
59 */
clear_page_mlock(struct page * page)60 void clear_page_mlock(struct page *page)
61 {
62 int nr_pages;
63
64 if (!TestClearPageMlocked(page))
65 return;
66
67 nr_pages = thp_nr_pages(page);
68 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
69 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
70 /*
71 * The previous TestClearPageMlocked() corresponds to the smp_mb()
72 * in __pagevec_lru_add_fn().
73 *
74 * See __pagevec_lru_add_fn for more explanation.
75 */
76 if (!isolate_lru_page(page)) {
77 putback_lru_page(page);
78 } else {
79 /*
80 * We lost the race. the page already moved to evictable list.
81 */
82 if (PageUnevictable(page))
83 count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
84 }
85 }
86
87 /*
88 * Mark page as mlocked if not already.
89 * If page on LRU, isolate and putback to move to unevictable list.
90 */
mlock_vma_page(struct page * page)91 void mlock_vma_page(struct page *page)
92 {
93 /* Serialize with page migration */
94 BUG_ON(!PageLocked(page));
95
96 VM_BUG_ON_PAGE(PageTail(page), page);
97 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
98
99 if (!TestSetPageMlocked(page)) {
100 int nr_pages = thp_nr_pages(page);
101
102 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
103 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
104 if (!isolate_lru_page(page))
105 putback_lru_page(page);
106 }
107 }
108
109 /*
110 * Finish munlock after successful page isolation
111 *
112 * Page must be locked. This is a wrapper for page_mlock()
113 * and putback_lru_page() with munlock accounting.
114 */
__munlock_isolated_page(struct page * page)115 static void __munlock_isolated_page(struct page *page)
116 {
117 /*
118 * Optimization: if the page was mapped just once, that's our mapping
119 * and we don't need to check all the other vmas.
120 */
121 if (page_mapcount(page) > 1)
122 page_mlock(page);
123
124 /* Did try_to_unlock() succeed or punt? */
125 if (!PageMlocked(page))
126 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
127
128 putback_lru_page(page);
129 }
130
131 /*
132 * Accounting for page isolation fail during munlock
133 *
134 * Performs accounting when page isolation fails in munlock. There is nothing
135 * else to do because it means some other task has already removed the page
136 * from the LRU. putback_lru_page() will take care of removing the page from
137 * the unevictable list, if necessary. vmscan [page_referenced()] will move
138 * the page back to the unevictable list if some other vma has it mlocked.
139 */
__munlock_isolation_failed(struct page * page)140 static void __munlock_isolation_failed(struct page *page)
141 {
142 int nr_pages = thp_nr_pages(page);
143
144 if (PageUnevictable(page))
145 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
146 else
147 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
148 }
149
150 /**
151 * munlock_vma_page - munlock a vma page
152 * @page: page to be unlocked, either a normal page or THP page head
153 *
154 * returns the size of the page as a page mask (0 for normal page,
155 * HPAGE_PMD_NR - 1 for THP head page)
156 *
157 * called from munlock()/munmap() path with page supposedly on the LRU.
158 * When we munlock a page, because the vma where we found the page is being
159 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
160 * page locked so that we can leave it on the unevictable lru list and not
161 * bother vmscan with it. However, to walk the page's rmap list in
162 * page_mlock() we must isolate the page from the LRU. If some other
163 * task has removed the page from the LRU, we won't be able to do that.
164 * So we clear the PageMlocked as we might not get another chance. If we
165 * can't isolate the page, we leave it for putback_lru_page() and vmscan
166 * [page_referenced()/try_to_unmap()] to deal with.
167 */
munlock_vma_page(struct page * page)168 unsigned int munlock_vma_page(struct page *page)
169 {
170 int nr_pages;
171
172 /* For page_mlock() and to serialize with page migration */
173 BUG_ON(!PageLocked(page));
174 VM_BUG_ON_PAGE(PageTail(page), page);
175
176 if (!TestClearPageMlocked(page)) {
177 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
178 return 0;
179 }
180
181 nr_pages = thp_nr_pages(page);
182 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
183
184 if (!isolate_lru_page(page))
185 __munlock_isolated_page(page);
186 else
187 __munlock_isolation_failed(page);
188
189 return nr_pages - 1;
190 }
191
192 /*
193 * convert get_user_pages() return value to posix mlock() error
194 */
__mlock_posix_error_return(long retval)195 static int __mlock_posix_error_return(long retval)
196 {
197 if (retval == -EFAULT)
198 retval = -ENOMEM;
199 else if (retval == -ENOMEM)
200 retval = -EAGAIN;
201 return retval;
202 }
203
204 /*
205 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
206 *
207 * The fast path is available only for evictable pages with single mapping.
208 * Then we can bypass the per-cpu pvec and get better performance.
209 * when mapcount > 1 we need page_mlock() which can fail.
210 * when !page_evictable(), we need the full redo logic of putback_lru_page to
211 * avoid leaving evictable page in unevictable list.
212 *
213 * In case of success, @page is added to @pvec and @pgrescued is incremented
214 * in case that the page was previously unevictable. @page is also unlocked.
215 */
__putback_lru_fast_prepare(struct page * page,struct pagevec * pvec,int * pgrescued)216 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
217 int *pgrescued)
218 {
219 VM_BUG_ON_PAGE(PageLRU(page), page);
220 VM_BUG_ON_PAGE(!PageLocked(page), page);
221
222 if (page_mapcount(page) <= 1 && page_evictable(page)) {
223 pagevec_add(pvec, page);
224 if (TestClearPageUnevictable(page))
225 (*pgrescued)++;
226 unlock_page(page);
227 return true;
228 }
229
230 return false;
231 }
232
233 /*
234 * Putback multiple evictable pages to the LRU
235 *
236 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
237 * the pages might have meanwhile become unevictable but that is OK.
238 */
__putback_lru_fast(struct pagevec * pvec,int pgrescued)239 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
240 {
241 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
242 /*
243 *__pagevec_lru_add() calls release_pages() so we don't call
244 * put_page() explicitly
245 */
246 __pagevec_lru_add(pvec);
247 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
248 }
249
250 /*
251 * Munlock a batch of pages from the same zone
252 *
253 * The work is split to two main phases. First phase clears the Mlocked flag
254 * and attempts to isolate the pages, all under a single zone lru lock.
255 * The second phase finishes the munlock only for pages where isolation
256 * succeeded.
257 *
258 * Note that the pagevec may be modified during the process.
259 */
__munlock_pagevec(struct pagevec * pvec,struct zone * zone)260 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
261 {
262 int i;
263 int nr = pagevec_count(pvec);
264 int delta_munlocked = -nr;
265 struct pagevec pvec_putback;
266 struct lruvec *lruvec = NULL;
267 int pgrescued = 0;
268
269 pagevec_init(&pvec_putback);
270
271 /* Phase 1: page isolation */
272 for (i = 0; i < nr; i++) {
273 struct page *page = pvec->pages[i];
274 struct folio *folio = page_folio(page);
275
276 if (TestClearPageMlocked(page)) {
277 /*
278 * We already have pin from follow_page_mask()
279 * so we can spare the get_page() here.
280 */
281 if (TestClearPageLRU(page)) {
282 lruvec = folio_lruvec_relock_irq(folio, lruvec);
283 del_page_from_lru_list(page, lruvec);
284 continue;
285 } else
286 __munlock_isolation_failed(page);
287 } else {
288 delta_munlocked++;
289 }
290
291 /*
292 * We won't be munlocking this page in the next phase
293 * but we still need to release the follow_page_mask()
294 * pin. We cannot do it under lru_lock however. If it's
295 * the last pin, __page_cache_release() would deadlock.
296 */
297 pagevec_add(&pvec_putback, pvec->pages[i]);
298 pvec->pages[i] = NULL;
299 }
300 if (lruvec) {
301 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
302 unlock_page_lruvec_irq(lruvec);
303 } else if (delta_munlocked) {
304 mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
305 }
306
307 /* Now we can release pins of pages that we are not munlocking */
308 pagevec_release(&pvec_putback);
309
310 /* Phase 2: page munlock */
311 for (i = 0; i < nr; i++) {
312 struct page *page = pvec->pages[i];
313
314 if (page) {
315 lock_page(page);
316 if (!__putback_lru_fast_prepare(page, &pvec_putback,
317 &pgrescued)) {
318 /*
319 * Slow path. We don't want to lose the last
320 * pin before unlock_page()
321 */
322 get_page(page); /* for putback_lru_page() */
323 __munlock_isolated_page(page);
324 unlock_page(page);
325 put_page(page); /* from follow_page_mask() */
326 }
327 }
328 }
329
330 /*
331 * Phase 3: page putback for pages that qualified for the fast path
332 * This will also call put_page() to return pin from follow_page_mask()
333 */
334 if (pagevec_count(&pvec_putback))
335 __putback_lru_fast(&pvec_putback, pgrescued);
336 }
337
338 /*
339 * Fill up pagevec for __munlock_pagevec using pte walk
340 *
341 * The function expects that the struct page corresponding to @start address is
342 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
343 *
344 * The rest of @pvec is filled by subsequent pages within the same pmd and same
345 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
346 * pages also get pinned.
347 *
348 * Returns the address of the next page that should be scanned. This equals
349 * @start + PAGE_SIZE when no page could be added by the pte walk.
350 */
__munlock_pagevec_fill(struct pagevec * pvec,struct vm_area_struct * vma,struct zone * zone,unsigned long start,unsigned long end)351 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
352 struct vm_area_struct *vma, struct zone *zone,
353 unsigned long start, unsigned long end)
354 {
355 pte_t *pte;
356 spinlock_t *ptl;
357
358 /*
359 * Initialize pte walk starting at the already pinned page where we
360 * are sure that there is a pte, as it was pinned under the same
361 * mmap_lock write op.
362 */
363 pte = get_locked_pte(vma->vm_mm, start, &ptl);
364 /* Make sure we do not cross the page table boundary */
365 end = pgd_addr_end(start, end);
366 end = p4d_addr_end(start, end);
367 end = pud_addr_end(start, end);
368 end = pmd_addr_end(start, end);
369
370 /* The page next to the pinned page is the first we will try to get */
371 start += PAGE_SIZE;
372 while (start < end) {
373 struct page *page = NULL;
374 pte++;
375 if (pte_present(*pte))
376 page = vm_normal_page(vma, start, *pte);
377 /*
378 * Break if page could not be obtained or the page's node+zone does not
379 * match
380 */
381 if (!page || page_zone(page) != zone)
382 break;
383
384 /*
385 * Do not use pagevec for PTE-mapped THP,
386 * munlock_vma_pages_range() will handle them.
387 */
388 if (PageTransCompound(page))
389 break;
390
391 get_page(page);
392 /*
393 * Increase the address that will be returned *before* the
394 * eventual break due to pvec becoming full by adding the page
395 */
396 start += PAGE_SIZE;
397 if (pagevec_add(pvec, page) == 0)
398 break;
399 }
400 pte_unmap_unlock(pte, ptl);
401 return start;
402 }
403
404 /*
405 * munlock_vma_pages_range() - munlock all pages in the vma range.'
406 * @vma - vma containing range to be munlock()ed.
407 * @start - start address in @vma of the range
408 * @end - end of range in @vma.
409 *
410 * For mremap(), munmap() and exit().
411 *
412 * Called with @vma VM_LOCKED.
413 *
414 * Returns with VM_LOCKED cleared. Callers must be prepared to
415 * deal with this.
416 *
417 * We don't save and restore VM_LOCKED here because pages are
418 * still on lru. In unmap path, pages might be scanned by reclaim
419 * and re-mlocked by page_mlock/try_to_unmap before we unmap and
420 * free them. This will result in freeing mlocked pages.
421 */
munlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)422 void munlock_vma_pages_range(struct vm_area_struct *vma,
423 unsigned long start, unsigned long end)
424 {
425 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
426
427 while (start < end) {
428 struct page *page;
429 unsigned int page_mask = 0;
430 unsigned long page_increm;
431 struct pagevec pvec;
432 struct zone *zone;
433
434 pagevec_init(&pvec);
435 /*
436 * Although FOLL_DUMP is intended for get_dump_page(),
437 * it just so happens that its special treatment of the
438 * ZERO_PAGE (returning an error instead of doing get_page)
439 * suits munlock very well (and if somehow an abnormal page
440 * has sneaked into the range, we won't oops here: great).
441 */
442 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
443
444 if (page && !IS_ERR(page)) {
445 if (PageTransTail(page)) {
446 VM_BUG_ON_PAGE(PageMlocked(page), page);
447 put_page(page); /* follow_page_mask() */
448 } else if (PageTransHuge(page)) {
449 lock_page(page);
450 /*
451 * Any THP page found by follow_page_mask() may
452 * have gotten split before reaching
453 * munlock_vma_page(), so we need to compute
454 * the page_mask here instead.
455 */
456 page_mask = munlock_vma_page(page);
457 unlock_page(page);
458 put_page(page); /* follow_page_mask() */
459 } else {
460 /*
461 * Non-huge pages are handled in batches via
462 * pagevec. The pin from follow_page_mask()
463 * prevents them from collapsing by THP.
464 */
465 pagevec_add(&pvec, page);
466 zone = page_zone(page);
467
468 /*
469 * Try to fill the rest of pagevec using fast
470 * pte walk. This will also update start to
471 * the next page to process. Then munlock the
472 * pagevec.
473 */
474 start = __munlock_pagevec_fill(&pvec, vma,
475 zone, start, end);
476 __munlock_pagevec(&pvec, zone);
477 goto next;
478 }
479 }
480 page_increm = 1 + page_mask;
481 start += page_increm * PAGE_SIZE;
482 next:
483 cond_resched();
484 }
485 }
486
487 /*
488 * mlock_fixup - handle mlock[all]/munlock[all] requests.
489 *
490 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
491 * munlock is a no-op. However, for some special vmas, we go ahead and
492 * populate the ptes.
493 *
494 * For vmas that pass the filters, merge/split as appropriate.
495 */
mlock_fixup(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,vm_flags_t newflags)496 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
497 unsigned long start, unsigned long end, vm_flags_t newflags)
498 {
499 struct mm_struct *mm = vma->vm_mm;
500 pgoff_t pgoff;
501 int nr_pages;
502 int ret = 0;
503 int lock = !!(newflags & VM_LOCKED);
504 vm_flags_t old_flags = vma->vm_flags;
505
506 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
507 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
508 vma_is_dax(vma) || vma_is_secretmem(vma))
509 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
510 goto out;
511
512 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
513 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
514 vma->vm_file, pgoff, vma_policy(vma),
515 vma->vm_userfaultfd_ctx);
516 if (*prev) {
517 vma = *prev;
518 goto success;
519 }
520
521 if (start != vma->vm_start) {
522 ret = split_vma(mm, vma, start, 1);
523 if (ret)
524 goto out;
525 }
526
527 if (end != vma->vm_end) {
528 ret = split_vma(mm, vma, end, 0);
529 if (ret)
530 goto out;
531 }
532
533 success:
534 /*
535 * Keep track of amount of locked VM.
536 */
537 nr_pages = (end - start) >> PAGE_SHIFT;
538 if (!lock)
539 nr_pages = -nr_pages;
540 else if (old_flags & VM_LOCKED)
541 nr_pages = 0;
542 mm->locked_vm += nr_pages;
543
544 /*
545 * vm_flags is protected by the mmap_lock held in write mode.
546 * It's okay if try_to_unmap_one unmaps a page just after we
547 * set VM_LOCKED, populate_vma_page_range will bring it back.
548 */
549
550 if (lock)
551 vma->vm_flags = newflags;
552 else
553 munlock_vma_pages_range(vma, start, end);
554
555 out:
556 *prev = vma;
557 return ret;
558 }
559
apply_vma_lock_flags(unsigned long start,size_t len,vm_flags_t flags)560 static int apply_vma_lock_flags(unsigned long start, size_t len,
561 vm_flags_t flags)
562 {
563 unsigned long nstart, end, tmp;
564 struct vm_area_struct *vma, *prev;
565 int error;
566
567 VM_BUG_ON(offset_in_page(start));
568 VM_BUG_ON(len != PAGE_ALIGN(len));
569 end = start + len;
570 if (end < start)
571 return -EINVAL;
572 if (end == start)
573 return 0;
574 vma = find_vma(current->mm, start);
575 if (!vma || vma->vm_start > start)
576 return -ENOMEM;
577
578 prev = vma->vm_prev;
579 if (start > vma->vm_start)
580 prev = vma;
581
582 for (nstart = start ; ; ) {
583 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
584
585 newflags |= flags;
586
587 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
588 tmp = vma->vm_end;
589 if (tmp > end)
590 tmp = end;
591 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
592 if (error)
593 break;
594 nstart = tmp;
595 if (nstart < prev->vm_end)
596 nstart = prev->vm_end;
597 if (nstart >= end)
598 break;
599
600 vma = prev->vm_next;
601 if (!vma || vma->vm_start != nstart) {
602 error = -ENOMEM;
603 break;
604 }
605 }
606 return error;
607 }
608
609 /*
610 * Go through vma areas and sum size of mlocked
611 * vma pages, as return value.
612 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
613 * is also counted.
614 * Return value: previously mlocked page counts
615 */
count_mm_mlocked_page_nr(struct mm_struct * mm,unsigned long start,size_t len)616 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
617 unsigned long start, size_t len)
618 {
619 struct vm_area_struct *vma;
620 unsigned long count = 0;
621
622 if (mm == NULL)
623 mm = current->mm;
624
625 vma = find_vma(mm, start);
626 if (vma == NULL)
627 return 0;
628
629 for (; vma ; vma = vma->vm_next) {
630 if (start >= vma->vm_end)
631 continue;
632 if (start + len <= vma->vm_start)
633 break;
634 if (vma->vm_flags & VM_LOCKED) {
635 if (start > vma->vm_start)
636 count -= (start - vma->vm_start);
637 if (start + len < vma->vm_end) {
638 count += start + len - vma->vm_start;
639 break;
640 }
641 count += vma->vm_end - vma->vm_start;
642 }
643 }
644
645 return count >> PAGE_SHIFT;
646 }
647
do_mlock(unsigned long start,size_t len,vm_flags_t flags)648 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
649 {
650 unsigned long locked;
651 unsigned long lock_limit;
652 int error = -ENOMEM;
653
654 start = untagged_addr(start);
655
656 if (!can_do_mlock())
657 return -EPERM;
658
659 len = PAGE_ALIGN(len + (offset_in_page(start)));
660 start &= PAGE_MASK;
661
662 lock_limit = rlimit(RLIMIT_MEMLOCK);
663 lock_limit >>= PAGE_SHIFT;
664 locked = len >> PAGE_SHIFT;
665
666 if (mmap_write_lock_killable(current->mm))
667 return -EINTR;
668
669 locked += current->mm->locked_vm;
670 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
671 /*
672 * It is possible that the regions requested intersect with
673 * previously mlocked areas, that part area in "mm->locked_vm"
674 * should not be counted to new mlock increment count. So check
675 * and adjust locked count if necessary.
676 */
677 locked -= count_mm_mlocked_page_nr(current->mm,
678 start, len);
679 }
680
681 /* check against resource limits */
682 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
683 error = apply_vma_lock_flags(start, len, flags);
684
685 mmap_write_unlock(current->mm);
686 if (error)
687 return error;
688
689 error = __mm_populate(start, len, 0);
690 if (error)
691 return __mlock_posix_error_return(error);
692 return 0;
693 }
694
SYSCALL_DEFINE2(mlock,unsigned long,start,size_t,len)695 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
696 {
697 return do_mlock(start, len, VM_LOCKED);
698 }
699
SYSCALL_DEFINE3(mlock2,unsigned long,start,size_t,len,int,flags)700 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
701 {
702 vm_flags_t vm_flags = VM_LOCKED;
703
704 if (flags & ~MLOCK_ONFAULT)
705 return -EINVAL;
706
707 if (flags & MLOCK_ONFAULT)
708 vm_flags |= VM_LOCKONFAULT;
709
710 return do_mlock(start, len, vm_flags);
711 }
712
SYSCALL_DEFINE2(munlock,unsigned long,start,size_t,len)713 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
714 {
715 int ret;
716
717 start = untagged_addr(start);
718
719 len = PAGE_ALIGN(len + (offset_in_page(start)));
720 start &= PAGE_MASK;
721
722 if (mmap_write_lock_killable(current->mm))
723 return -EINTR;
724 ret = apply_vma_lock_flags(start, len, 0);
725 mmap_write_unlock(current->mm);
726
727 return ret;
728 }
729
730 /*
731 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
732 * and translate into the appropriate modifications to mm->def_flags and/or the
733 * flags for all current VMAs.
734 *
735 * There are a couple of subtleties with this. If mlockall() is called multiple
736 * times with different flags, the values do not necessarily stack. If mlockall
737 * is called once including the MCL_FUTURE flag and then a second time without
738 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
739 */
apply_mlockall_flags(int flags)740 static int apply_mlockall_flags(int flags)
741 {
742 struct vm_area_struct *vma, *prev = NULL;
743 vm_flags_t to_add = 0;
744
745 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
746 if (flags & MCL_FUTURE) {
747 current->mm->def_flags |= VM_LOCKED;
748
749 if (flags & MCL_ONFAULT)
750 current->mm->def_flags |= VM_LOCKONFAULT;
751
752 if (!(flags & MCL_CURRENT))
753 goto out;
754 }
755
756 if (flags & MCL_CURRENT) {
757 to_add |= VM_LOCKED;
758 if (flags & MCL_ONFAULT)
759 to_add |= VM_LOCKONFAULT;
760 }
761
762 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
763 vm_flags_t newflags;
764
765 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
766 newflags |= to_add;
767
768 /* Ignore errors */
769 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
770 cond_resched();
771 }
772 out:
773 return 0;
774 }
775
SYSCALL_DEFINE1(mlockall,int,flags)776 SYSCALL_DEFINE1(mlockall, int, flags)
777 {
778 unsigned long lock_limit;
779 int ret;
780
781 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
782 flags == MCL_ONFAULT)
783 return -EINVAL;
784
785 if (!can_do_mlock())
786 return -EPERM;
787
788 lock_limit = rlimit(RLIMIT_MEMLOCK);
789 lock_limit >>= PAGE_SHIFT;
790
791 if (mmap_write_lock_killable(current->mm))
792 return -EINTR;
793
794 ret = -ENOMEM;
795 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
796 capable(CAP_IPC_LOCK))
797 ret = apply_mlockall_flags(flags);
798 mmap_write_unlock(current->mm);
799 if (!ret && (flags & MCL_CURRENT))
800 mm_populate(0, TASK_SIZE);
801
802 return ret;
803 }
804
SYSCALL_DEFINE0(munlockall)805 SYSCALL_DEFINE0(munlockall)
806 {
807 int ret;
808
809 if (mmap_write_lock_killable(current->mm))
810 return -EINTR;
811 ret = apply_mlockall_flags(0);
812 mmap_write_unlock(current->mm);
813 return ret;
814 }
815
816 /*
817 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
818 * shm segments) get accounted against the user_struct instead.
819 */
820 static DEFINE_SPINLOCK(shmlock_user_lock);
821
user_shm_lock(size_t size,struct ucounts * ucounts)822 int user_shm_lock(size_t size, struct ucounts *ucounts)
823 {
824 unsigned long lock_limit, locked;
825 long memlock;
826 int allowed = 0;
827
828 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
829 lock_limit = rlimit(RLIMIT_MEMLOCK);
830 if (lock_limit == RLIM_INFINITY)
831 allowed = 1;
832 lock_limit >>= PAGE_SHIFT;
833 spin_lock(&shmlock_user_lock);
834 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
835
836 if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
837 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
838 goto out;
839 }
840 if (!get_ucounts(ucounts)) {
841 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
842 goto out;
843 }
844 allowed = 1;
845 out:
846 spin_unlock(&shmlock_user_lock);
847 return allowed;
848 }
849
user_shm_unlock(size_t size,struct ucounts * ucounts)850 void user_shm_unlock(size_t size, struct ucounts *ucounts)
851 {
852 spin_lock(&shmlock_user_lock);
853 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
854 spin_unlock(&shmlock_user_lock);
855 put_ucounts(ucounts);
856 }
857