1 // SPDX-License-Identifier: GPL-2.0
2 #define _GNU_SOURCE
3 #include "main.h"
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <pthread.h>
8 #include <malloc.h>
9 #include <assert.h>
10 #include <errno.h>
11 #include <limits.h>
12 
13 #define SMP_CACHE_BYTES 64
14 #define cache_line_size() SMP_CACHE_BYTES
15 #define ____cacheline_aligned_in_smp __attribute__ ((aligned (SMP_CACHE_BYTES)))
16 #define unlikely(x)    (__builtin_expect(!!(x), 0))
17 #define likely(x)    (__builtin_expect(!!(x), 1))
18 #define ALIGN(x, a) (((x) + (a) - 1) / (a) * (a))
19 #define SIZE_MAX        (~(size_t)0)
20 #define KMALLOC_MAX_SIZE SIZE_MAX
21 
22 typedef pthread_spinlock_t  spinlock_t;
23 
24 typedef int gfp_t;
25 #define __GFP_ZERO 0x1
26 
kmalloc(unsigned size,gfp_t gfp)27 static void *kmalloc(unsigned size, gfp_t gfp)
28 {
29 	void *p = memalign(64, size);
30 	if (!p)
31 		return p;
32 
33 	if (gfp & __GFP_ZERO)
34 		memset(p, 0, size);
35 	return p;
36 }
37 
kzalloc(unsigned size,gfp_t flags)38 static inline void *kzalloc(unsigned size, gfp_t flags)
39 {
40 	return kmalloc(size, flags | __GFP_ZERO);
41 }
42 
kmalloc_array(size_t n,size_t size,gfp_t flags)43 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
44 {
45 	if (size != 0 && n > SIZE_MAX / size)
46 		return NULL;
47 	return kmalloc(n * size, flags);
48 }
49 
kcalloc(size_t n,size_t size,gfp_t flags)50 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
51 {
52 	return kmalloc_array(n, size, flags | __GFP_ZERO);
53 }
54 
kfree(void * p)55 static void kfree(void *p)
56 {
57 	if (p)
58 		free(p);
59 }
60 
61 #define kvmalloc_array kmalloc_array
62 #define kvfree kfree
63 
spin_lock_init(spinlock_t * lock)64 static void spin_lock_init(spinlock_t *lock)
65 {
66 	int r = pthread_spin_init(lock, 0);
67 	assert(!r);
68 }
69 
spin_lock(spinlock_t * lock)70 static void spin_lock(spinlock_t *lock)
71 {
72 	int ret = pthread_spin_lock(lock);
73 	assert(!ret);
74 }
75 
spin_unlock(spinlock_t * lock)76 static void spin_unlock(spinlock_t *lock)
77 {
78 	int ret = pthread_spin_unlock(lock);
79 	assert(!ret);
80 }
81 
spin_lock_bh(spinlock_t * lock)82 static void spin_lock_bh(spinlock_t *lock)
83 {
84 	spin_lock(lock);
85 }
86 
spin_unlock_bh(spinlock_t * lock)87 static void spin_unlock_bh(spinlock_t *lock)
88 {
89 	spin_unlock(lock);
90 }
91 
spin_lock_irq(spinlock_t * lock)92 static void spin_lock_irq(spinlock_t *lock)
93 {
94 	spin_lock(lock);
95 }
96 
spin_unlock_irq(spinlock_t * lock)97 static void spin_unlock_irq(spinlock_t *lock)
98 {
99 	spin_unlock(lock);
100 }
101 
spin_lock_irqsave(spinlock_t * lock,unsigned long f)102 static void spin_lock_irqsave(spinlock_t *lock, unsigned long f)
103 {
104 	spin_lock(lock);
105 }
106 
spin_unlock_irqrestore(spinlock_t * lock,unsigned long f)107 static void spin_unlock_irqrestore(spinlock_t *lock, unsigned long f)
108 {
109 	spin_unlock(lock);
110 }
111 
112 #include "../../../include/linux/ptr_ring.h"
113 
114 static unsigned long long headcnt, tailcnt;
115 static struct ptr_ring array ____cacheline_aligned_in_smp;
116 
117 /* implemented by ring */
alloc_ring(void)118 void alloc_ring(void)
119 {
120 	int ret = ptr_ring_init(&array, ring_size, 0);
121 	assert(!ret);
122 	/* Hacky way to poke at ring internals. Useful for testing though. */
123 	if (param)
124 		array.batch = param;
125 }
126 
127 /* guest side */
add_inbuf(unsigned len,void * buf,void * datap)128 int add_inbuf(unsigned len, void *buf, void *datap)
129 {
130 	int ret;
131 
132 	ret = __ptr_ring_produce(&array, buf);
133 	if (ret >= 0) {
134 		ret = 0;
135 		headcnt++;
136 	}
137 
138 	return ret;
139 }
140 
141 /*
142  * ptr_ring API provides no way for producer to find out whether a given
143  * buffer was consumed.  Our tests merely require that a successful get_buf
144  * implies that add_inbuf succeed in the past, and that add_inbuf will succeed,
145  * fake it accordingly.
146  */
get_buf(unsigned * lenp,void ** bufp)147 void *get_buf(unsigned *lenp, void **bufp)
148 {
149 	void *datap;
150 
151 	if (tailcnt == headcnt || __ptr_ring_full(&array))
152 		datap = NULL;
153 	else {
154 		datap = "Buffer\n";
155 		++tailcnt;
156 	}
157 
158 	return datap;
159 }
160 
used_empty()161 bool used_empty()
162 {
163 	return (tailcnt == headcnt || __ptr_ring_full(&array));
164 }
165 
disable_call()166 void disable_call()
167 {
168 	assert(0);
169 }
170 
enable_call()171 bool enable_call()
172 {
173 	assert(0);
174 }
175 
kick_available(void)176 void kick_available(void)
177 {
178 	assert(0);
179 }
180 
181 /* host side */
disable_kick()182 void disable_kick()
183 {
184 	assert(0);
185 }
186 
enable_kick()187 bool enable_kick()
188 {
189 	assert(0);
190 }
191 
avail_empty()192 bool avail_empty()
193 {
194 	return __ptr_ring_empty(&array);
195 }
196 
use_buf(unsigned * lenp,void ** bufp)197 bool use_buf(unsigned *lenp, void **bufp)
198 {
199 	void *ptr;
200 
201 	ptr = __ptr_ring_consume(&array);
202 
203 	return ptr;
204 }
205 
call_used(void)206 void call_used(void)
207 {
208 	assert(0);
209 }
210