1 // SPDX-License-Identifier: BSD-2-Clause
2 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
3 *
4 * LibTomCrypt is a library that provides various cryptographic
5 * algorithms in a highly modular and flexible manner.
6 *
7 * The library is free for all purposes without any express
8 * guarantee it works.
9 */
10 #include "tomcrypt_private.h"
11
12 /**
13 @file sha256.c
14 LTC_SHA256 by Tom St Denis
15 */
16
17 #ifdef LTC_SHA256
18
19 const struct ltc_hash_descriptor sha256_desc =
20 {
21 "sha256",
22 0,
23 32,
24 64,
25
26 /* OID */
27 { 2, 16, 840, 1, 101, 3, 4, 2, 1, },
28 9,
29
30 &sha256_init,
31 &sha256_process,
32 &sha256_done,
33 &sha256_test,
34 NULL
35 };
36
37 #ifdef LTC_SMALL_CODE
38 /* the K array */
39 static const ulong32 K[64] = {
40 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
41 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
42 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
43 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
44 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
45 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
46 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
47 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
48 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
49 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
50 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
51 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
52 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
53 };
54 #endif
55
56 /* Various logical functions */
57 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
58 #define Maj(x,y,z) (((x | y) & z) | (x & y))
59 #define S(x, n) RORc((x),(n))
60 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
61 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
62 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
63 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
64 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
65
66 /* compress 512-bits */
67 #ifdef LTC_CLEAN_STACK
_sha256_compress(hash_state * md,const unsigned char * buf)68 static int _sha256_compress(hash_state * md, const unsigned char *buf)
69 #else
70 static int sha256_compress(hash_state * md, const unsigned char *buf)
71 #endif
72 {
73 ulong32 S[8], W[64], t0, t1;
74 #ifdef LTC_SMALL_CODE
75 ulong32 t;
76 #endif
77 int i;
78
79 /* copy state into S */
80 for (i = 0; i < 8; i++) {
81 S[i] = md->sha256.state[i];
82 }
83
84 /* copy the state into 512-bits into W[0..15] */
85 for (i = 0; i < 16; i++) {
86 LOAD32H(W[i], buf + (4*i));
87 }
88
89 /* fill W[16..63] */
90 for (i = 16; i < 64; i++) {
91 W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
92 }
93
94 /* Compress */
95 #ifdef LTC_SMALL_CODE
96 #define RND(a,b,c,d,e,f,g,h,i) \
97 t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
98 t1 = Sigma0(a) + Maj(a, b, c); \
99 d += t0; \
100 h = t0 + t1;
101
102 for (i = 0; i < 64; ++i) {
103 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
104 t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
105 S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
106 }
107 #else
108 #define RND(a,b,c,d,e,f,g,h,i,ki) \
109 t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
110 t1 = Sigma0(a) + Maj(a, b, c); \
111 d += t0; \
112 h = t0 + t1;
113
114 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
115 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
116 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
117 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
118 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
119 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
120 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
121 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
122 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
123 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
124 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
125 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
126 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
127 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
128 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
129 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
130 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
131 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
132 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
133 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
134 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
135 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
136 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
137 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
138 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
139 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
140 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
141 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
142 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
143 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
144 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
145 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
146 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
147 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
148 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
149 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
150 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
151 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
152 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
153 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
154 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
155 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
156 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
157 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
158 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
159 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
160 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
161 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
162 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
163 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
164 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
165 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
166 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
167 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
168 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
169 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
170 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
171 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
172 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
173 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
174 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
175 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
176 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
177 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
178
179 #undef RND
180
181 #endif
182
183 /* feedback */
184 for (i = 0; i < 8; i++) {
185 md->sha256.state[i] = md->sha256.state[i] + S[i];
186 }
187 return CRYPT_OK;
188 }
189
190 #ifdef LTC_CLEAN_STACK
sha256_compress(hash_state * md,const unsigned char * buf)191 static int sha256_compress(hash_state * md, const unsigned char *buf)
192 {
193 int err;
194 err = _sha256_compress(md, buf);
195 burn_stack(sizeof(ulong32) * 74);
196 return err;
197 }
198 #endif
199
200 /**
201 Initialize the hash state
202 @param md The hash state you wish to initialize
203 @return CRYPT_OK if successful
204 */
sha256_init(hash_state * md)205 int sha256_init(hash_state * md)
206 {
207 LTC_ARGCHK(md != NULL);
208
209 md->sha256.curlen = 0;
210 md->sha256.length = 0;
211 md->sha256.state[0] = 0x6A09E667UL;
212 md->sha256.state[1] = 0xBB67AE85UL;
213 md->sha256.state[2] = 0x3C6EF372UL;
214 md->sha256.state[3] = 0xA54FF53AUL;
215 md->sha256.state[4] = 0x510E527FUL;
216 md->sha256.state[5] = 0x9B05688CUL;
217 md->sha256.state[6] = 0x1F83D9ABUL;
218 md->sha256.state[7] = 0x5BE0CD19UL;
219 return CRYPT_OK;
220 }
221
222 /**
223 Process a block of memory though the hash
224 @param md The hash state
225 @param in The data to hash
226 @param inlen The length of the data (octets)
227 @return CRYPT_OK if successful
228 */
229 HASH_PROCESS(sha256_process, sha256_compress, sha256, 64)
230
231 /**
232 Terminate the hash to get the digest
233 @param md The hash state
234 @param out [out] The destination of the hash (32 bytes)
235 @return CRYPT_OK if successful
236 */
sha256_done(hash_state * md,unsigned char * out)237 int sha256_done(hash_state * md, unsigned char *out)
238 {
239 int i;
240
241 LTC_ARGCHK(md != NULL);
242 LTC_ARGCHK(out != NULL);
243
244 if (md->sha256.curlen >= sizeof(md->sha256.buf)) {
245 return CRYPT_INVALID_ARG;
246 }
247
248
249 /* increase the length of the message */
250 md->sha256.length += md->sha256.curlen * 8;
251
252 /* append the '1' bit */
253 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;
254
255 /* if the length is currently above 56 bytes we append zeros
256 * then compress. Then we can fall back to padding zeros and length
257 * encoding like normal.
258 */
259 if (md->sha256.curlen > 56) {
260 while (md->sha256.curlen < 64) {
261 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
262 }
263 sha256_compress(md, md->sha256.buf);
264 md->sha256.curlen = 0;
265 }
266
267 /* pad upto 56 bytes of zeroes */
268 while (md->sha256.curlen < 56) {
269 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
270 }
271
272 /* store length */
273 STORE64H(md->sha256.length, md->sha256.buf+56);
274 sha256_compress(md, md->sha256.buf);
275
276 /* copy output */
277 for (i = 0; i < 8; i++) {
278 STORE32H(md->sha256.state[i], out+(4*i));
279 }
280 #ifdef LTC_CLEAN_STACK
281 zeromem(md, sizeof(hash_state));
282 #endif
283 return CRYPT_OK;
284 }
285
286 /**
287 Self-test the hash
288 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
289 */
sha256_test(void)290 int sha256_test(void)
291 {
292 #ifndef LTC_TEST
293 return CRYPT_NOP;
294 #else
295 static const struct {
296 const char *msg;
297 unsigned char hash[32];
298 } tests[] = {
299 { "abc",
300 { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
301 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
302 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
303 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
304 },
305 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
306 { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
307 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
308 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
309 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
310 },
311 };
312
313 int i;
314 unsigned char tmp[32];
315 hash_state md;
316
317 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
318 sha256_init(&md);
319 sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
320 sha256_done(&md, tmp);
321 if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA256", i)) {
322 return CRYPT_FAIL_TESTVECTOR;
323 }
324 }
325 return CRYPT_OK;
326 #endif
327 }
328
329 #endif
330
331
332
333 /* ref: $Format:%D$ */
334 /* git commit: $Format:%H$ */
335 /* commit time: $Format:%ai$ */
336