1 // SPDX-License-Identifier: Zlib
2 /* inftrees.c -- generate Huffman trees for efficient decoding
3  * Copyright (C) 1995-2017 Mark Adler
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 #include "zutil.h"
8 #include "inftrees.h"
9 
10 #define MAXBITS 15
11 
12 const char inflate_copyright[] =
13    " inflate 1.2.11 Copyright 1995-2017 Mark Adler ";
14 /*
15   If you use the zlib library in a product, an acknowledgment is welcome
16   in the documentation of your product. If for some reason you cannot
17   include such an acknowledgment, I would appreciate that you keep this
18   copyright string in the executable of your product.
19  */
20 
21 /*
22    Build a set of tables to decode the provided canonical Huffman code.
23    The code lengths are lens[0..codes-1].  The result starts at *table,
24    whose indices are 0..2^bits-1.  work is a writable array of at least
25    lens shorts, which is used as a work area.  type is the type of code
26    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
27    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
28    on return points to the next available entry's address.  bits is the
29    requested root table index bits, and on return it is the actual root
30    table index bits.  It will differ if the request is greater than the
31    longest code or if it is less than the shortest code.
32  */
inflate_table(type,lens,codes,table,bits,work)33 int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work)
34 codetype type;
35 unsigned short FAR *lens;
36 unsigned codes;
37 code FAR * FAR *table;
38 unsigned FAR *bits;
39 unsigned short FAR *work;
40 {
41     unsigned len;               /* a code's length in bits */
42     unsigned sym;               /* index of code symbols */
43     unsigned min, max;          /* minimum and maximum code lengths */
44     unsigned root;              /* number of index bits for root table */
45     unsigned curr;              /* number of index bits for current table */
46     unsigned drop;              /* code bits to drop for sub-table */
47     int left;                   /* number of prefix codes available */
48     unsigned used;              /* code entries in table used */
49     unsigned huff;              /* Huffman code */
50     unsigned incr;              /* for incrementing code, index */
51     unsigned fill;              /* index for replicating entries */
52     unsigned low;               /* low bits for current root entry */
53     unsigned mask;              /* mask for low root bits */
54     code here;                  /* table entry for duplication */
55     code FAR *next;             /* next available space in table */
56     const unsigned short FAR *base;     /* base value table to use */
57     const unsigned short FAR *extra;    /* extra bits table to use */
58     unsigned match;             /* use base and extra for symbol >= match */
59     unsigned short count[MAXBITS+1];    /* number of codes of each length */
60     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
61     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
62         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
63         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
64     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
65         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
66         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 77, 202};
67     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
68         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
69         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
70         8193, 12289, 16385, 24577, 0, 0};
71     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
72         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
73         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
74         28, 28, 29, 29, 64, 64};
75 
76     /*
77        Process a set of code lengths to create a canonical Huffman code.  The
78        code lengths are lens[0..codes-1].  Each length corresponds to the
79        symbols 0..codes-1.  The Huffman code is generated by first sorting the
80        symbols by length from short to long, and retaining the symbol order
81        for codes with equal lengths.  Then the code starts with all zero bits
82        for the first code of the shortest length, and the codes are integer
83        increments for the same length, and zeros are appended as the length
84        increases.  For the deflate format, these bits are stored backwards
85        from their more natural integer increment ordering, and so when the
86        decoding tables are built in the large loop below, the integer codes
87        are incremented backwards.
88 
89        This routine assumes, but does not check, that all of the entries in
90        lens[] are in the range 0..MAXBITS.  The caller must assure this.
91        1..MAXBITS is interpreted as that code length.  zero means that that
92        symbol does not occur in this code.
93 
94        The codes are sorted by computing a count of codes for each length,
95        creating from that a table of starting indices for each length in the
96        sorted table, and then entering the symbols in order in the sorted
97        table.  The sorted table is work[], with that space being provided by
98        the caller.
99 
100        The length counts are used for other purposes as well, i.e. finding
101        the minimum and maximum length codes, determining if there are any
102        codes at all, checking for a valid set of lengths, and looking ahead
103        at length counts to determine sub-table sizes when building the
104        decoding tables.
105      */
106 
107     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
108     for (len = 0; len <= MAXBITS; len++)
109         count[len] = 0;
110     for (sym = 0; sym < codes; sym++)
111         count[lens[sym]]++;
112 
113     /* bound code lengths, force root to be within code lengths */
114     root = *bits;
115     for (max = MAXBITS; max >= 1; max--)
116         if (count[max] != 0) break;
117     if (root > max) root = max;
118     if (max == 0) {                     /* no symbols to code at all */
119         here.op = (unsigned char)64;    /* invalid code marker */
120         here.bits = (unsigned char)1;
121         here.val = (unsigned short)0;
122         *(*table)++ = here;             /* make a table to force an error */
123         *(*table)++ = here;
124         *bits = 1;
125         return 0;     /* no symbols, but wait for decoding to report error */
126     }
127     for (min = 1; min < max; min++)
128         if (count[min] != 0) break;
129     if (root < min) root = min;
130 
131     /* check for an over-subscribed or incomplete set of lengths */
132     left = 1;
133     for (len = 1; len <= MAXBITS; len++) {
134         left <<= 1;
135         left -= count[len];
136         if (left < 0) return -1;        /* over-subscribed */
137     }
138     if (left > 0 && (type == CODES || max != 1))
139         return -1;                      /* incomplete set */
140 
141     /* generate offsets into symbol table for each length for sorting */
142     offs[1] = 0;
143     for (len = 1; len < MAXBITS; len++)
144         offs[len + 1] = offs[len] + count[len];
145 
146     /* sort symbols by length, by symbol order within each length */
147     for (sym = 0; sym < codes; sym++)
148         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
149 
150     /*
151        Create and fill in decoding tables.  In this loop, the table being
152        filled is at next and has curr index bits.  The code being used is huff
153        with length len.  That code is converted to an index by dropping drop
154        bits off of the bottom.  For codes where len is less than drop + curr,
155        those top drop + curr - len bits are incremented through all values to
156        fill the table with replicated entries.
157 
158        root is the number of index bits for the root table.  When len exceeds
159        root, sub-tables are created pointed to by the root entry with an index
160        of the low root bits of huff.  This is saved in low to check for when a
161        new sub-table should be started.  drop is zero when the root table is
162        being filled, and drop is root when sub-tables are being filled.
163 
164        When a new sub-table is needed, it is necessary to look ahead in the
165        code lengths to determine what size sub-table is needed.  The length
166        counts are used for this, and so count[] is decremented as codes are
167        entered in the tables.
168 
169        used keeps track of how many table entries have been allocated from the
170        provided *table space.  It is checked for LENS and DIST tables against
171        the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
172        the initial root table size constants.  See the comments in inftrees.h
173        for more information.
174 
175        sym increments through all symbols, and the loop terminates when
176        all codes of length max, i.e. all codes, have been processed.  This
177        routine permits incomplete codes, so another loop after this one fills
178        in the rest of the decoding tables with invalid code markers.
179      */
180 
181     /* set up for code type */
182     switch (type) {
183     case CODES:
184         base = extra = work;    /* dummy value--not used */
185         match = 20;
186         break;
187     case LENS:
188         base = lbase;
189         extra = lext;
190         match = 257;
191         break;
192     default:    /* DISTS */
193         base = dbase;
194         extra = dext;
195         match = 0;
196     }
197 
198     /* initialize state for loop */
199     huff = 0;                   /* starting code */
200     sym = 0;                    /* starting code symbol */
201     len = min;                  /* starting code length */
202     next = *table;              /* current table to fill in */
203     curr = root;                /* current table index bits */
204     drop = 0;                   /* current bits to drop from code for index */
205     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
206     used = 1U << root;          /* use root table entries */
207     mask = used - 1;            /* mask for comparing low */
208 
209     /* check available table space */
210     if ((type == LENS && used > ENOUGH_LENS) ||
211         (type == DISTS && used > ENOUGH_DISTS))
212         return 1;
213 
214     /* process all codes and make table entries */
215     for (;;) {
216         /* create table entry */
217         here.bits = (unsigned char)(len - drop);
218         if (work[sym] + 1U < match) {
219             here.op = (unsigned char)0;
220             here.val = work[sym];
221         }
222         else if (work[sym] >= match) {
223             here.op = (unsigned char)(extra[work[sym] - match]);
224             here.val = base[work[sym] - match];
225         }
226         else {
227             here.op = (unsigned char)(32 + 64);         /* end of block */
228             here.val = 0;
229         }
230 
231         /* replicate for those indices with low len bits equal to huff */
232         incr = 1U << (len - drop);
233         fill = 1U << curr;
234         min = fill;                 /* save offset to next table */
235         do {
236             fill -= incr;
237             next[(huff >> drop) + fill] = here;
238         } while (fill != 0);
239 
240         /* backwards increment the len-bit code huff */
241         incr = 1U << (len - 1);
242         while (huff & incr)
243             incr >>= 1;
244         if (incr != 0) {
245             huff &= incr - 1;
246             huff += incr;
247         }
248         else
249             huff = 0;
250 
251         /* go to next symbol, update count, len */
252         sym++;
253         if (--(count[len]) == 0) {
254             if (len == max) break;
255             len = lens[work[sym]];
256         }
257 
258         /* create new sub-table if needed */
259         if (len > root && (huff & mask) != low) {
260             /* if first time, transition to sub-tables */
261             if (drop == 0)
262                 drop = root;
263 
264             /* increment past last table */
265             next += min;            /* here min is 1 << curr */
266 
267             /* determine length of next table */
268             curr = len - drop;
269             left = (int)(1 << curr);
270             while (curr + drop < max) {
271                 left -= count[curr + drop];
272                 if (left <= 0) break;
273                 curr++;
274                 left <<= 1;
275             }
276 
277             /* check for enough space */
278             used += 1U << curr;
279             if ((type == LENS && used > ENOUGH_LENS) ||
280                 (type == DISTS && used > ENOUGH_DISTS))
281                 return 1;
282 
283             /* point entry in root table to sub-table */
284             low = huff & mask;
285             (*table)[low].op = (unsigned char)curr;
286             (*table)[low].bits = (unsigned char)root;
287             (*table)[low].val = (unsigned short)(next - *table);
288         }
289     }
290 
291     /* fill in remaining table entry if code is incomplete (guaranteed to have
292        at most one remaining entry, since if the code is incomplete, the
293        maximum code length that was allowed to get this far is one bit) */
294     if (huff != 0) {
295         here.op = (unsigned char)64;            /* invalid code marker */
296         here.bits = (unsigned char)(len - drop);
297         here.val = (unsigned short)0;
298         next[huff] = here;
299     }
300 
301     /* set return parameters */
302     *table += used;
303     *bits = root;
304     return 0;
305 }
306