1 /*
2  * Copyright (c) 2017-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #ifndef XLAT_TABLES_V2_H
8 #define XLAT_TABLES_V2_H
9 
10 #include <lib/xlat_tables/xlat_tables_defs.h>
11 #include <lib/xlat_tables/xlat_tables_v2_helpers.h>
12 
13 #ifndef __ASSEMBLER__
14 #include <stddef.h>
15 #include <stdint.h>
16 
17 #include <lib/xlat_tables/xlat_mmu_helpers.h>
18 
19 /*
20  * Default granularity size for an mmap_region_t.
21  * Useful when no specific granularity is required.
22  *
23  * By default, choose the biggest possible block size allowed by the
24  * architectural state and granule size in order to minimize the number of page
25  * tables required for the mapping.
26  */
27 #define REGION_DEFAULT_GRANULARITY	XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC)
28 
29 /* Helper macro to define an mmap_region_t. */
30 #define MAP_REGION(_pa, _va, _sz, _attr)	\
31 	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY)
32 
33 /* Helper macro to define an mmap_region_t with an identity mapping. */
34 #define MAP_REGION_FLAT(_adr, _sz, _attr)			\
35 	MAP_REGION(_adr, _adr, _sz, _attr)
36 
37 /*
38  * Helper macro to define entries for mmap_region_t. It allows to define 'pa'
39  * and sets 'va' to 0 for each region. To be used with mmap_add_alloc_va().
40  */
41 #define MAP_REGION_ALLOC_VA(pa, sz, attr)	MAP_REGION(pa, 0, sz, attr)
42 
43 /*
44  * Helper macro to define an mmap_region_t to map with the desired granularity
45  * of translation tables.
46  *
47  * The granularity value passed to this macro must be a valid block or page
48  * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB.
49  * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library
50  * is free to choose the granularity for this region. In this case, it is
51  * equivalent to the MAP_REGION() macro.
52  */
53 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr)			\
54 	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr)
55 
56 /*
57  * Shifts and masks to access fields of an mmap attribute
58  */
59 #define MT_TYPE_MASK		U(0x7)
60 #define MT_TYPE(_attr)		((_attr) & MT_TYPE_MASK)
61 /* Access permissions (RO/RW) */
62 #define MT_PERM_SHIFT		U(3)
63 /* Security state (SECURE/NS) */
64 #define MT_SEC_SHIFT		U(4)
65 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */
66 #define MT_EXECUTE_SHIFT	U(5)
67 /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */
68 #define MT_USER_SHIFT		U(6)
69 
70 /* Shareability attribute for the memory region */
71 #define MT_SHAREABILITY_SHIFT	U(7)
72 #define MT_SHAREABILITY_MASK	(U(3) << MT_SHAREABILITY_SHIFT)
73 #define MT_SHAREABILITY(_attr)	((_attr) & MT_SHAREABILITY_MASK)
74 /* All other bits are reserved */
75 
76 /*
77  * Memory mapping attributes
78  */
79 
80 /*
81  * Memory types supported.
82  * These are organised so that, going down the list, the memory types are
83  * getting weaker; conversely going up the list the memory types are getting
84  * stronger.
85  */
86 #define MT_DEVICE		U(0)
87 #define MT_NON_CACHEABLE	U(1)
88 #define MT_MEMORY		U(2)
89 /* Values up to 7 are reserved to add new memory types in the future */
90 
91 #define MT_RO			(U(0) << MT_PERM_SHIFT)
92 #define MT_RW			(U(1) << MT_PERM_SHIFT)
93 
94 #define MT_SECURE		(U(0) << MT_SEC_SHIFT)
95 #define MT_NS			(U(1) << MT_SEC_SHIFT)
96 
97 /*
98  * Access permissions for instruction execution are only relevant for normal
99  * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially
100  * overridden) otherwise:
101  *  - Device memory is always marked as execute-never.
102  *  - Read-write normal memory is always marked as execute-never.
103  */
104 #define MT_EXECUTE		(U(0) << MT_EXECUTE_SHIFT)
105 #define MT_EXECUTE_NEVER	(U(1) << MT_EXECUTE_SHIFT)
106 
107 /*
108  * When mapping a region at EL0 or EL1, this attribute will be used to determine
109  * if a User mapping (EL0) will be created or a Privileged mapping (EL1).
110  */
111 #define MT_USER			(U(1) << MT_USER_SHIFT)
112 #define MT_PRIVILEGED		(U(0) << MT_USER_SHIFT)
113 
114 /*
115  * Shareability defines the visibility of any cache changes to
116  * all masters belonging to a shareable domain.
117  *
118  * MT_SHAREABILITY_ISH: For inner shareable domain
119  * MT_SHAREABILITY_OSH: For outer shareable domain
120  * MT_SHAREABILITY_NSH: For non shareable domain
121  */
122 #define MT_SHAREABILITY_ISH	(U(1) << MT_SHAREABILITY_SHIFT)
123 #define MT_SHAREABILITY_OSH	(U(2) << MT_SHAREABILITY_SHIFT)
124 #define MT_SHAREABILITY_NSH	(U(3) << MT_SHAREABILITY_SHIFT)
125 
126 /* Compound attributes for most common usages */
127 #define MT_CODE			(MT_MEMORY | MT_RO | MT_EXECUTE)
128 #define MT_RO_DATA		(MT_MEMORY | MT_RO | MT_EXECUTE_NEVER)
129 #define MT_RW_DATA		(MT_MEMORY | MT_RW | MT_EXECUTE_NEVER)
130 
131 /*
132  * Structure for specifying a single region of memory.
133  */
134 typedef struct mmap_region {
135 	unsigned long long	base_pa;
136 	uintptr_t		base_va;
137 	size_t			size;
138 	unsigned int		attr;
139 	/* Desired granularity. See the MAP_REGION2() macro for more details. */
140 	size_t			granularity;
141 } mmap_region_t;
142 
143 /*
144  * Translation regimes supported by this library. EL_REGIME_INVALID tells the
145  * library to detect it at runtime.
146  */
147 #define EL1_EL0_REGIME		1
148 #define EL2_REGIME		2
149 #define EL3_REGIME		3
150 #define EL_REGIME_INVALID	-1
151 
152 /*
153  * Declare the translation context type.
154  * Its definition is private.
155  */
156 typedef struct xlat_ctx xlat_ctx_t;
157 
158 /*
159  * Statically allocate a translation context and associated structures. Also
160  * initialize them.
161  *
162  * _ctx_name:
163  *   Prefix for the translation context variable.
164  *   E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'.
165  *   Useful to distinguish multiple contexts from one another.
166  *
167  * _mmap_count:
168  *   Number of mmap_region_t to allocate.
169  *   Would typically be MAX_MMAP_REGIONS for the translation context describing
170  *   the BL image currently executing.
171  *
172  * _xlat_tables_count:
173  *   Number of sub-translation tables to allocate.
174  *   Would typically be MAX_XLAT_TABLES for the translation context describing
175  *   the BL image currently executing.
176  *   Note that this is only for sub-tables ; at the initial lookup level, there
177  *   is always a single table.
178  *
179  * _virt_addr_space_size, _phy_addr_space_size:
180  *   Size (in bytes) of the virtual (resp. physical) address space.
181  *   Would typically be PLAT_VIRT_ADDR_SPACE_SIZE
182  *   (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the
183  *   BL image currently executing.
184  */
185 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \
186 			      _virt_addr_space_size, _phy_addr_space_size) \
187 	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
188 					 (_xlat_tables_count),		\
189 					 (_virt_addr_space_size),	\
190 					 (_phy_addr_space_size),	\
191 					 EL_REGIME_INVALID,		\
192 					 "xlat_table", "base_xlat_table")
193 
194 /*
195  * Same as REGISTER_XLAT_CONTEXT plus the additional parameters:
196  *
197  * _xlat_regime:
198  *   Specify the translation regime managed by this xlat_ctx_t instance. The
199  *   values are the one from the EL*_REGIME definitions.
200  *
201  * _section_name:
202  *   Specify the name of the section where the translation tables have to be
203  *   placed by the linker.
204  *
205  * _base_table_section_name:
206  *   Specify the name of the section where the base translation tables have to
207  *   be placed by the linker.
208  */
209 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \
210 			_virt_addr_space_size, _phy_addr_space_size,	\
211 			_xlat_regime, _section_name, _base_table_section_name) \
212 	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
213 					 (_xlat_tables_count),		\
214 					 (_virt_addr_space_size),	\
215 					 (_phy_addr_space_size),	\
216 					 (_xlat_regime),		\
217 					 (_section_name), (_base_table_section_name) \
218 )
219 
220 /******************************************************************************
221  * Generic translation table APIs.
222  * Each API comes in 2 variants:
223  * - one that acts on the current translation context for this BL image
224  * - another that acts on the given translation context instead. This variant
225  *   is named after the 1st version, with an additional '_ctx' suffix.
226  *****************************************************************************/
227 
228 /*
229  * Initialize translation tables from the current list of mmap regions. Calling
230  * this function marks the transition point after which static regions can no
231  * longer be added.
232  */
233 void init_xlat_tables(void);
234 void init_xlat_tables_ctx(xlat_ctx_t *ctx);
235 
236 /*
237  * Fill all fields of a dynamic translation tables context. It must be done
238  * either statically with REGISTER_XLAT_CONTEXT() or at runtime with this
239  * function.
240  */
241 void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max,
242 			    uintptr_t va_max, struct mmap_region *mmap,
243 			    unsigned int mmap_num, uint64_t **tables,
244 			    unsigned int tables_num, uint64_t *base_table,
245 			    int xlat_regime, int *mapped_regions);
246 
247 /*
248  * Add a static region with defined base PA and base VA. This function can only
249  * be used before initializing the translation tables. The region cannot be
250  * removed afterwards.
251  */
252 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
253 		     size_t size, unsigned int attr);
254 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
255 
256 /*
257  * Add an array of static regions with defined base PA and base VA. This
258  * function can only be used before initializing the translation tables. The
259  * regions cannot be removed afterwards.
260  */
261 void mmap_add(const mmap_region_t *mm);
262 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
263 
264 /*
265  * Add a region with defined base PA. Returns base VA calculated using the
266  * highest existing region in the mmap array even if it fails to allocate the
267  * region.
268  */
269 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va,
270 			      size_t size, unsigned int attr);
271 void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
272 
273 /*
274  * Add an array of static regions with defined base PA, and fill the base VA
275  * field on the array of structs. This function can only be used before
276  * initializing the translation tables. The regions cannot be removed afterwards.
277  */
278 void mmap_add_alloc_va(mmap_region_t *mm);
279 
280 #if PLAT_XLAT_TABLES_DYNAMIC
281 /*
282  * Add a dynamic region with defined base PA and base VA. This type of region
283  * can be added and removed even after the translation tables are initialized.
284  *
285  * Returns:
286  *        0: Success.
287  *   EINVAL: Invalid values were used as arguments.
288  *   ERANGE: Memory limits were surpassed.
289  *   ENOMEM: Not enough space in the mmap array or not enough free xlat tables.
290  *    EPERM: It overlaps another region in an invalid way.
291  */
292 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
293 			    size_t size, unsigned int attr);
294 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
295 
296 /*
297  * Add a dynamic region with defined base PA. Returns base VA calculated using
298  * the highest existing region in the mmap array even if it fails to allocate
299  * the region.
300  *
301  * mmap_add_dynamic_region_alloc_va() returns the allocated VA in 'base_va'.
302  * mmap_add_dynamic_region_alloc_va_ctx() returns it in 'mm->base_va'.
303  *
304  * It returns the same error values as mmap_add_dynamic_region().
305  */
306 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa,
307 				     uintptr_t *base_va,
308 				     size_t size, unsigned int attr);
309 int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
310 
311 /*
312  * Remove a region with the specified base VA and size. Only dynamic regions can
313  * be removed, and they can be removed even if the translation tables are
314  * initialized.
315  *
316  * Returns:
317  *        0: Success.
318  *   EINVAL: The specified region wasn't found.
319  *    EPERM: Trying to remove a static region.
320  */
321 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size);
322 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx,
323 				uintptr_t base_va,
324 				size_t size);
325 
326 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
327 
328 /*
329  * Change the memory attributes of the memory region starting from a given
330  * virtual address in a set of translation tables.
331  *
332  * This function can only be used after the translation tables have been
333  * initialized.
334  *
335  * The base address of the memory region must be aligned on a page boundary.
336  * The size of this memory region must be a multiple of a page size.
337  * The memory region must be already mapped by the given translation tables
338  * and it must be mapped at the granularity of a page.
339  *
340  * Return 0 on success, a negative value on error.
341  *
342  * In case of error, the memory attributes remain unchanged and this function
343  * has no effect.
344  *
345  * ctx
346  *   Translation context to work on.
347  * base_va:
348  *   Virtual address of the 1st page to change the attributes of.
349  * size:
350  *   Size in bytes of the memory region.
351  * attr:
352  *   New attributes of the page tables. The attributes that can be changed are
353  *   data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE)
354  *   and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts
355  *   that are used in the EL1&0 translation regime. Also, note that this
356  *   function doesn't allow to remap a region as RW and executable, or to remap
357  *   device memory as executable.
358  *
359  * NOTE: The caller of this function must be able to write to the translation
360  * tables, i.e. the memory where they are stored must be mapped with read-write
361  * access permissions. This function assumes it is the case. If this is not
362  * the case then this function might trigger a data abort exception.
363  *
364  * NOTE2: The caller is responsible for making sure that the targeted
365  * translation tables are not modified by any other code while this function is
366  * executing.
367  */
368 int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
369 				   size_t size, uint32_t attr);
370 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr);
371 
372 #if PLAT_RO_XLAT_TABLES
373 /*
374  * Change the memory attributes of the memory region encompassing the higher
375  * level translation tables to secure read-only data.
376  *
377  * Return 0 on success, a negative error code on error.
378  */
379 int xlat_make_tables_readonly(void);
380 #endif
381 
382 /*
383  * Query the memory attributes of a memory page in a set of translation tables.
384  *
385  * Return 0 on success, a negative error code on error.
386  * On success, the attributes are stored into *attr.
387  *
388  * ctx
389  *   Translation context to work on.
390  * base_va
391  *   Virtual address of the page to get the attributes of.
392  *   There are no alignment restrictions on this address. The attributes of the
393  *   memory page it lies within are returned.
394  * attr
395  *   Output parameter where to store the attributes of the targeted memory page.
396  */
397 int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
398 				uint32_t *attr);
399 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr);
400 
401 #endif /*__ASSEMBLER__*/
402 #endif /* XLAT_TABLES_V2_H */
403