1 /*
2  * Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <drivers/delay_timer.h>
9 #include <errno.h>
10 #include <string.h>
11 
12 #include <bpmp_ipc.h>
13 #include <pmc.h>
14 #include <security_engine.h>
15 #include <tegra_private.h>
16 
17 #include "se_private.h"
18 
19 /*******************************************************************************
20  * Constants and Macros
21  ******************************************************************************/
22 #define SE0_MAX_BUSY_TIMEOUT_MS		U(100)	/* 100ms */
23 #define BYTES_IN_WORD			U(4)
24 #define SHA256_MAX_HASH_RESULT		U(7)
25 #define SHA256_DST_SIZE			U(32)
26 #define SHA_FIRST_OP			U(1)
27 #define MAX_SHA_ENGINE_CHUNK_SIZE	U(0xFFFFFF)
28 #define SHA256_MSG_LENGTH_ONETIME	U(0xffff)
29 
30 /*
31  * Check that SE operation has completed after kickoff
32  * This function is invoked after an SE operation has been started,
33  * and it checks the following conditions:
34  * 1. SE0_INT_STATUS = SE0_OP_DONE
35  * 2. SE0_STATUS = IDLE
36  * 3. SE0_ERR_STATUS is clean.
37  */
tegra_se_operation_complete(void)38 static int32_t tegra_se_operation_complete(void)
39 {
40 	uint32_t val = 0U;
41 
42 	/* Read SE0 interrupt register to ensure H/W operation complete */
43 	val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
44 	if (SE0_INT_OP_DONE(val) == SE0_INT_OP_DONE_CLEAR) {
45 		ERROR("%s: Engine busy state too many times! val = 0x%x\n",
46 			__func__, val);
47 		return -ETIMEDOUT;
48 	}
49 
50 	/* Read SE0 status idle to ensure H/W operation complete */
51 	val = tegra_se_read_32(SE0_SHA_STATUS_0);
52 	if (val != SE0_SHA_STATUS_IDLE) {
53 		ERROR("%s: Idle state timeout! val = 0x%x\n", __func__,
54 			val);
55 		return -ETIMEDOUT;
56 	}
57 
58 	/* Ensure that no errors are thrown during operation */
59 	val = tegra_se_read_32(SE0_ERR_STATUS_REG_OFFSET);
60 	if (val != SE0_ERR_STATUS_CLEAR) {
61 		ERROR("%s: Error during SE operation! val = 0x%x",
62 			__func__, val);
63 		return -ENOTSUP;
64 	}
65 
66 	return 0;
67 }
68 
69 /*
70  * Security engine primitive normal operations
71  */
tegra_se_start_normal_operation(uint64_t src_addr,uint32_t nbytes,uint32_t last_buf,uint32_t src_len_inbytes)72 static int32_t tegra_se_start_normal_operation(uint64_t src_addr,
73 		uint32_t nbytes, uint32_t last_buf, uint32_t src_len_inbytes)
74 {
75 	int32_t ret = 0;
76 	uint32_t val = 0U;
77 	uint32_t src_in_lo;
78 	uint32_t src_in_msb;
79 	uint32_t src_in_hi;
80 
81 	if ((src_addr == 0UL) || (nbytes == 0U))
82 		return -EINVAL;
83 
84 	src_in_lo = (uint32_t)src_addr;
85 	src_in_msb = ((uint32_t)(src_addr >> 32U) & 0xffU);
86 	src_in_hi = ((src_in_msb << SE0_IN_HI_ADDR_HI_0_MSB_SHIFT) |
87 				(nbytes & 0xffffffU));
88 
89 	/* set SRC_IN_ADDR_LO and SRC_IN_ADDR_HI*/
90 	tegra_se_write_32(SE0_IN_ADDR, src_in_lo);
91 	tegra_se_write_32(SE0_IN_HI_ADDR_HI, src_in_hi);
92 
93 	val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
94 	if (val > 0U) {
95 		tegra_se_write_32(SE0_INT_STATUS_REG_OFFSET, 0x00000U);
96 	}
97 
98 	/* Enable SHA interrupt for SE0 Operation */
99 	tegra_se_write_32(SE0_SHA_INT_ENABLE, 0x1aU);
100 
101 	/* flush to DRAM for SE to use the updated contents */
102 	flush_dcache_range(src_addr, src_len_inbytes);
103 
104 	/* Start SHA256 operation */
105 	if (last_buf == 1U) {
106 		tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START |
107 				SE0_UNIT_OPERATION_PKT_LASTBUF_FIELD);
108 	} else {
109 		tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START);
110 	}
111 
112 	/* Wait for SE-operation to finish */
113 	udelay(SE0_MAX_BUSY_TIMEOUT_MS * 100U);
114 
115 	/* Check SE0 operation status */
116 	ret = tegra_se_operation_complete();
117 	if (ret != 0) {
118 		ERROR("SE operation complete Failed! 0x%x", ret);
119 		return ret;
120 	}
121 
122 	return 0;
123 }
124 
tegra_se_calculate_sha256_hash(uint64_t src_addr,uint32_t src_len_inbyte)125 static int32_t tegra_se_calculate_sha256_hash(uint64_t src_addr,
126 						uint32_t src_len_inbyte)
127 {
128 	uint32_t val, last_buf, i;
129 	int32_t ret = 0;
130 	uint32_t operations;
131 	uint64_t src_len_inbits;
132 	uint32_t len_bits_msb;
133 	uint32_t len_bits_lsb;
134 	uint32_t number_of_operations, max_bytes, bytes_left, remaining_bytes;
135 
136 	if (src_len_inbyte > MAX_SHA_ENGINE_CHUNK_SIZE) {
137 		ERROR("SHA input chunk size too big: 0x%x\n", src_len_inbyte);
138 		return -EINVAL;
139 	}
140 
141 	if (src_addr == 0UL) {
142 		return -EINVAL;
143 	}
144 
145 	/* number of bytes per operation */
146 	max_bytes = SHA256_HASH_SIZE_BYTES * SHA256_MSG_LENGTH_ONETIME;
147 
148 	src_len_inbits = src_len_inbyte * 8U;
149 	len_bits_msb = (uint32_t)(src_len_inbits >> 32U);
150 	len_bits_lsb = (uint32_t)(src_len_inbits & 0xFFFFFFFF);
151 
152 	/* program SE0_CONFIG for SHA256 operation */
153 	val = SE0_CONFIG_ENC_ALG_SHA | SE0_CONFIG_ENC_MODE_SHA256 |
154 		SE0_CONFIG_DEC_ALG_NOP | SE0_CONFIG_DST_HASHREG;
155 	tegra_se_write_32(SE0_SHA_CONFIG, val);
156 
157 	/* set SE0_SHA_MSG_LENGTH registers */
158 	tegra_se_write_32(SE0_SHA_MSG_LENGTH_0, len_bits_lsb);
159 	tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
160 	tegra_se_write_32(SE0_SHA_MSG_LENGTH_1, len_bits_msb);
161 
162 	/* zero out unused SE0_SHA_MSG_LENGTH and SE0_SHA_MSG_LEFT */
163 	tegra_se_write_32(SE0_SHA_MSG_LENGTH_2, 0U);
164 	tegra_se_write_32(SE0_SHA_MSG_LENGTH_3, 0U);
165 	tegra_se_write_32(SE0_SHA_MSG_LEFT_1, 0U);
166 	tegra_se_write_32(SE0_SHA_MSG_LEFT_2, 0U);
167 	tegra_se_write_32(SE0_SHA_MSG_LEFT_3, 0U);
168 
169 	number_of_operations = src_len_inbyte / max_bytes;
170 	remaining_bytes = src_len_inbyte % max_bytes;
171 	if (remaining_bytes > 0U) {
172 		number_of_operations += 1U;
173 	}
174 
175 	/*
176 	 * 1. Operations == 1:	program SE0_SHA_TASK register to initiate SHA256
177 	 *			hash generation by setting
178 	 *			1(SE0_SHA_CONFIG_HW_INIT_HASH) to SE0_SHA_TASK
179 	 *			and start SHA256-normal operation.
180 	 * 2. 1 < Operations < number_of_operations: program SE0_SHA_TASK to
181 	 *			0(SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE) to load
182 	 *			intermediate SHA256 digest result from
183 	 *			HASH_RESULT register to continue SHA256
184 	 *			generation and start SHA256-normal operation.
185 	 * 3. Operations == number_of_operations: continue with step 2 and set
186 	 *			max_bytes to bytes_left to process final
187 	 *			hash-result generation and
188 	 *			start SHA256-normal operation.
189 	 */
190 	bytes_left = src_len_inbyte;
191 	for (operations = 1U; operations <= number_of_operations;
192 								operations++) {
193 		if (operations == SHA_FIRST_OP) {
194 			val = SE0_SHA_CONFIG_HW_INIT_HASH;
195 		} else {
196 			/* Load intermediate SHA digest result to
197 			 * SHA:HASH_RESULT(0..7) to continue the SHA
198 			 * calculation and tell the SHA engine to use it.
199 			 */
200 			for (i = 0U; (i / BYTES_IN_WORD) <=
201 				SHA256_MAX_HASH_RESULT; i += BYTES_IN_WORD) {
202 				val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 +
203 									i);
204 				tegra_se_write_32(SE0_SHA_HASH_RESULT_0 + i,
205 									val);
206 			}
207 			val = SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE;
208 			if (len_bits_lsb <= (max_bytes * 8U)) {
209 				len_bits_lsb = (remaining_bytes * 8U);
210 			} else {
211 				len_bits_lsb -= (max_bytes * 8U);
212 			}
213 			tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
214 		}
215 		tegra_se_write_32(SE0_SHA_TASK_CONFIG, val);
216 
217 		max_bytes = (SHA256_HASH_SIZE_BYTES *
218 						SHA256_MSG_LENGTH_ONETIME);
219 		if (bytes_left < max_bytes) {
220 			max_bytes = bytes_left;
221 			last_buf = 1U;
222 		} else {
223 			bytes_left = bytes_left - max_bytes;
224 			last_buf = 0U;
225 		}
226 		/* start operation */
227 		ret = tegra_se_start_normal_operation(src_addr, max_bytes,
228 					last_buf, src_len_inbyte);
229 		if (ret != 0) {
230 			ERROR("Error during SE operation! 0x%x", ret);
231 			return -EINVAL;
232 		}
233 	}
234 
235 	return ret;
236 }
237 
238 /*
239  * Handler to generate SHA256 and save SHA256 hash to PMC-Scratch register.
240  */
tegra_se_save_sha256_hash(uint64_t bl31_base,uint32_t src_len_inbyte)241 int32_t tegra_se_save_sha256_hash(uint64_t bl31_base, uint32_t src_len_inbyte)
242 {
243 	int32_t ret = 0;
244 	uint32_t val = 0U, hash_offset = 0U, scratch_offset = 0U, security;
245 
246 	/*
247 	 * Set SE_SOFT_SETTINGS=SE_SECURE to prevent NS process to change SE
248 	 * registers.
249 	 */
250 	security = tegra_se_read_32(SE0_SECURITY);
251 	tegra_se_write_32(SE0_SECURITY, security | SE0_SECURITY_SE_SOFT_SETTING);
252 
253 	ret = tegra_se_calculate_sha256_hash(bl31_base, src_len_inbyte);
254 	if (ret != 0L) {
255 		ERROR("%s: SHA256 generation failed\n", __func__);
256 		return ret;
257 	}
258 
259 	/*
260 	 * Reset SE_SECURE to previous value.
261 	 */
262 	tegra_se_write_32(SE0_SECURITY, security);
263 
264 	/* read SHA256_HASH_RESULT and save to PMC Scratch registers */
265 	scratch_offset = SECURE_SCRATCH_TZDRAM_SHA256_HASH_START;
266 	while (scratch_offset <= SECURE_SCRATCH_TZDRAM_SHA256_HASH_END) {
267 
268 		val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 + hash_offset);
269 		mmio_write_32(TEGRA_SCRATCH_BASE + scratch_offset, val);
270 
271 		hash_offset += BYTES_IN_WORD;
272 		scratch_offset += BYTES_IN_WORD;
273 	}
274 
275 	return ret;
276 }
277 
278