1 /*
2  * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <cortex_a57.h>
11 #include <common/bl_common.h>
12 #include <common/debug.h>
13 #include <common/interrupt_props.h>
14 #include <drivers/console.h>
15 #include <lib/xlat_tables/xlat_tables_v2.h>
16 #include <drivers/arm/gic_common.h>
17 #include <drivers/arm/gicv2.h>
18 #include <bl31/interrupt_mgmt.h>
19 
20 #include <bpmp.h>
21 #include <flowctrl.h>
22 #include <memctrl.h>
23 #include <plat/common/platform.h>
24 #include <security_engine.h>
25 #include <tegra_def.h>
26 #include <tegra_platform.h>
27 #include <tegra_private.h>
28 
29 /* sets of MMIO ranges setup */
30 #define MMIO_RANGE_0_ADDR	0x50000000
31 #define MMIO_RANGE_1_ADDR	0x60000000
32 #define MMIO_RANGE_2_ADDR	0x70000000
33 #define MMIO_RANGE_SIZE		0x200000
34 
35 /*
36  * Table of regions to map using the MMU.
37  */
38 static const mmap_region_t tegra_mmap[] = {
39 	MAP_REGION_FLAT(TEGRA_IRAM_BASE, 0x40000, /* 256KB */
40 			MT_DEVICE | MT_RW | MT_SECURE),
41 	MAP_REGION_FLAT(MMIO_RANGE_0_ADDR, MMIO_RANGE_SIZE,
42 			MT_DEVICE | MT_RW | MT_SECURE),
43 	MAP_REGION_FLAT(MMIO_RANGE_1_ADDR, MMIO_RANGE_SIZE,
44 			MT_DEVICE | MT_RW | MT_SECURE),
45 	MAP_REGION_FLAT(MMIO_RANGE_2_ADDR, MMIO_RANGE_SIZE,
46 			MT_DEVICE | MT_RW | MT_SECURE),
47 	{0}
48 };
49 
50 /*******************************************************************************
51  * Set up the pagetables as per the platform memory map & initialize the MMU
52  ******************************************************************************/
plat_get_mmio_map(void)53 const mmap_region_t *plat_get_mmio_map(void)
54 {
55 	/* Add the map region for security engine SE2 */
56 	if (tegra_chipid_is_t210_b01()) {
57 		mmap_add_region((uint64_t)TEGRA_SE2_BASE,
58 				(uint64_t)TEGRA_SE2_BASE,
59 				(uint64_t)TEGRA_SE2_RANGE_SIZE,
60 				MT_DEVICE | MT_RW | MT_SECURE);
61 	}
62 
63 	/* MMIO space */
64 	return tegra_mmap;
65 }
66 
67 /*******************************************************************************
68  * The Tegra power domain tree has a single system level power domain i.e. a
69  * single root node. The first entry in the power domain descriptor specifies
70  * the number of power domains at the highest power level.
71  *******************************************************************************
72  */
73 const unsigned char tegra_power_domain_tree_desc[] = {
74 	/* No of root nodes */
75 	1,
76 	/* No of clusters */
77 	PLATFORM_CLUSTER_COUNT,
78 	/* No of CPU cores - cluster0 */
79 	PLATFORM_MAX_CPUS_PER_CLUSTER,
80 	/* No of CPU cores - cluster1 */
81 	PLATFORM_MAX_CPUS_PER_CLUSTER
82 };
83 
84 /*******************************************************************************
85  * This function returns the Tegra default topology tree information.
86  ******************************************************************************/
plat_get_power_domain_tree_desc(void)87 const unsigned char *plat_get_power_domain_tree_desc(void)
88 {
89 	return tegra_power_domain_tree_desc;
90 }
91 
92 /*******************************************************************************
93  * Handler to get the System Counter Frequency
94  ******************************************************************************/
plat_get_syscnt_freq2(void)95 unsigned int plat_get_syscnt_freq2(void)
96 {
97 	return 19200000;
98 }
99 
100 /*******************************************************************************
101  * Maximum supported UART controllers
102  ******************************************************************************/
103 #define TEGRA210_MAX_UART_PORTS		5
104 
105 /*******************************************************************************
106  * This variable holds the UART port base addresses
107  ******************************************************************************/
108 static uint32_t tegra210_uart_addresses[TEGRA210_MAX_UART_PORTS + 1] = {
109 	0,	/* undefined - treated as an error case */
110 	TEGRA_UARTA_BASE,
111 	TEGRA_UARTB_BASE,
112 	TEGRA_UARTC_BASE,
113 	TEGRA_UARTD_BASE,
114 	TEGRA_UARTE_BASE,
115 };
116 
117 /*******************************************************************************
118  * Enable console corresponding to the console ID
119  ******************************************************************************/
plat_enable_console(int32_t id)120 void plat_enable_console(int32_t id)
121 {
122 	static console_t uart_console;
123 	uint32_t console_clock;
124 
125 	if ((id > 0) && (id < TEGRA210_MAX_UART_PORTS)) {
126 		/*
127 		 * Reference clock used by the FPGAs is a lot slower.
128 		 */
129 		if (tegra_platform_is_fpga()) {
130 			console_clock = TEGRA_BOOT_UART_CLK_13_MHZ;
131 		} else {
132 			console_clock = TEGRA_BOOT_UART_CLK_408_MHZ;
133 		}
134 
135 		(void)console_16550_register(tegra210_uart_addresses[id],
136 					     console_clock,
137 					     TEGRA_CONSOLE_BAUDRATE,
138 					     &uart_console);
139 		console_set_scope(&uart_console, CONSOLE_FLAG_BOOT |
140 			CONSOLE_FLAG_RUNTIME | CONSOLE_FLAG_CRASH);
141 	}
142 }
143 
144 /*******************************************************************************
145  * Return pointer to the BL31 params from previous bootloader
146  ******************************************************************************/
plat_get_bl31_params(void)147 struct tegra_bl31_params *plat_get_bl31_params(void)
148 {
149 	return NULL;
150 }
151 
152 /*******************************************************************************
153  * Return pointer to the BL31 platform params from previous bootloader
154  ******************************************************************************/
plat_get_bl31_plat_params(void)155 plat_params_from_bl2_t *plat_get_bl31_plat_params(void)
156 {
157 	return NULL;
158 }
159 
160 /*******************************************************************************
161  * Handler for early platform setup
162  ******************************************************************************/
plat_early_platform_setup(void)163 void plat_early_platform_setup(void)
164 {
165 	const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();
166 	uint64_t val;
167 
168 	/* Verify chip id is t210 */
169 	assert(tegra_chipid_is_t210());
170 
171 	/*
172 	 * Do initial security configuration to allow DRAM/device access.
173 	 */
174 	tegra_memctrl_tzdram_setup(plat_params->tzdram_base,
175 			(uint32_t)plat_params->tzdram_size);
176 
177 	/* platform parameter passed by the previous bootloader */
178 	if (plat_params->l2_ecc_parity_prot_dis != 1) {
179 		/* Enable ECC Parity Protection for Cortex-A57 CPUs */
180 		val = read_l2ctlr_el1();
181 		val |= (uint64_t)CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT;
182 		write_l2ctlr_el1(val);
183 	}
184 
185 	/* Initialize security engine driver */
186 	tegra_se_init();
187 }
188 
189 /* Secure IRQs for Tegra186 */
190 static const interrupt_prop_t tegra210_interrupt_props[] = {
191 	INTR_PROP_DESC(TEGRA_SDEI_SGI_PRIVATE, PLAT_SDEI_CRITICAL_PRI,
192 			GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE),
193 	INTR_PROP_DESC(TEGRA210_TIMER1_IRQ, PLAT_TEGRA_WDT_PRIO,
194 			GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE),
195 	INTR_PROP_DESC(TEGRA210_WDT_CPU_LEGACY_FIQ, PLAT_TEGRA_WDT_PRIO,
196 			GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE),
197 };
198 
199 /*******************************************************************************
200  * Handler for late platform setup
201  ******************************************************************************/
plat_late_platform_setup(void)202 void plat_late_platform_setup(void)
203 {
204 	const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();
205 	uint64_t sc7entry_end, offset;
206 	int ret;
207 	uint32_t val;
208 
209 	/* memmap TZDRAM area containing the SC7 Entry Firmware */
210 	if (plat_params->sc7entry_fw_base && plat_params->sc7entry_fw_size) {
211 
212 		assert(plat_params->sc7entry_fw_size <= TEGRA_IRAM_A_SIZE);
213 
214 		/*
215 		 * Verify that the SC7 entry firmware resides inside the TZDRAM
216 		 * aperture, _before_ the BL31 code and the start address is
217 		 * exactly 1MB from BL31 base.
218 		 */
219 
220 		/* sc7entry-fw must be _before_ BL31 base */
221 		assert(plat_params->tzdram_base > plat_params->sc7entry_fw_base);
222 
223 		sc7entry_end = plat_params->sc7entry_fw_base +
224 			       plat_params->sc7entry_fw_size;
225 		assert(sc7entry_end < plat_params->tzdram_base);
226 
227 		/* sc7entry-fw start must be exactly 1MB behind BL31 base */
228 		offset = plat_params->tzdram_base - plat_params->sc7entry_fw_base;
229 		assert(offset == 0x100000);
230 
231 		/* secure TZDRAM area */
232 		tegra_memctrl_tzdram_setup(plat_params->sc7entry_fw_base,
233 			plat_params->tzdram_size + offset);
234 
235 		/* power off BPMP processor until SC7 entry */
236 		tegra_fc_bpmp_off();
237 
238 		/* memmap SC7 entry firmware code */
239 		ret = mmap_add_dynamic_region(plat_params->sc7entry_fw_base,
240 				plat_params->sc7entry_fw_base,
241 				plat_params->sc7entry_fw_size,
242 				MT_SECURE | MT_RO_DATA);
243 		assert(ret == 0);
244 
245 		/* restrict PMC access to secure world */
246 		val = mmio_read_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE);
247 		val |= PMC_SECURITY_EN_BIT;
248 		mmio_write_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE, val);
249 	}
250 
251 	if (!tegra_chipid_is_t210_b01()) {
252 		/* restrict PMC access to secure world */
253 		val = mmio_read_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE);
254 		val |= PMC_SECURITY_EN_BIT;
255 		mmio_write_32(TEGRA_MISC_BASE + APB_SLAVE_SECURITY_ENABLE, val);
256 	}
257 }
258 
259 /*******************************************************************************
260  * Initialize the GIC and SGIs
261  ******************************************************************************/
plat_gic_setup(void)262 void plat_gic_setup(void)
263 {
264 	tegra_gic_setup(tegra210_interrupt_props, ARRAY_SIZE(tegra210_interrupt_props));
265 	tegra_gic_init();
266 
267 	/* Enable handling for FIQs */
268 	tegra_fiq_handler_setup();
269 
270 	/*
271 	 * Enable routing watchdog FIQs from the flow controller to
272 	 * the GICD.
273 	 */
274 	tegra_fc_enable_fiq_to_ccplex_routing();
275 }
276 /*******************************************************************************
277  * Handler to indicate support for System Suspend
278  ******************************************************************************/
plat_supports_system_suspend(void)279 bool plat_supports_system_suspend(void)
280 {
281 	const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();
282 
283 	/*
284 	 * sc7entry-fw is only supported by Tegra210 SoCs.
285 	 */
286 	if (!tegra_chipid_is_t210_b01() && (plat_params->sc7entry_fw_base != 0U)) {
287 		return true;
288 	} else if (tegra_chipid_is_t210_b01()) {
289 		return true;
290 	} else {
291 		return false;
292 	}
293 }
294 /*******************************************************************************
295  * Platform specific runtime setup.
296  ******************************************************************************/
plat_runtime_setup(void)297 void plat_runtime_setup(void)
298 {
299 	/*
300 	 * During cold boot, it is observed that the arbitration
301 	 * bit is set in the Memory controller leading to false
302 	 * error interrupts in the non-secure world. To avoid
303 	 * this, clean the interrupt status register before
304 	 * booting into the non-secure world
305 	 */
306 	tegra_memctrl_clear_pending_interrupts();
307 
308 	/*
309 	 * During boot, USB3 and flash media (SDMMC/SATA) devices need
310 	 * access to IRAM. Because these clients connect to the MC and
311 	 * do not have a direct path to the IRAM, the MC implements AHB
312 	 * redirection during boot to allow path to IRAM. In this mode
313 	 * accesses to a programmed memory address aperture are directed
314 	 * to the AHB bus, allowing access to the IRAM. This mode must be
315 	 * disabled before we jump to the non-secure world.
316 	 */
317 	tegra_memctrl_disable_ahb_redirection();
318 }
319