1/*
2 * Copyright (c) 2015-2021, Arm Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#ifndef EL3_COMMON_MACROS_S
8#define EL3_COMMON_MACROS_S
9
10#include <arch.h>
11#include <asm_macros.S>
12#include <context.h>
13#include <lib/xlat_tables/xlat_tables_defs.h>
14
15	/*
16	 * Helper macro to initialise EL3 registers we care about.
17	 */
18	.macro el3_arch_init_common
19	/* ---------------------------------------------------------------------
20	 * SCTLR_EL3 has already been initialised - read current value before
21	 * modifying.
22	 *
23	 * SCTLR_EL3.I: Enable the instruction cache.
24	 *
25	 * SCTLR_EL3.SA: Enable Stack Alignment check. A SP alignment fault
26	 *  exception is generated if a load or store instruction executed at
27	 *  EL3 uses the SP as the base address and the SP is not aligned to a
28	 *  16-byte boundary.
29	 *
30	 * SCTLR_EL3.A: Enable Alignment fault checking. All instructions that
31	 *  load or store one or more registers have an alignment check that the
32	 *  address being accessed is aligned to the size of the data element(s)
33	 *  being accessed.
34	 * ---------------------------------------------------------------------
35	 */
36	mov	x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
37	mrs	x0, sctlr_el3
38	orr	x0, x0, x1
39	msr	sctlr_el3, x0
40	isb
41
42#ifdef IMAGE_BL31
43	/* ---------------------------------------------------------------------
44	 * Initialise the per-cpu cache pointer to the CPU.
45	 * This is done early to enable crash reporting to have access to crash
46	 * stack. Since crash reporting depends on cpu_data to report the
47	 * unhandled exception, not doing so can lead to recursive exceptions
48	 * due to a NULL TPIDR_EL3.
49	 * ---------------------------------------------------------------------
50	 */
51	bl	init_cpu_data_ptr
52#endif /* IMAGE_BL31 */
53
54	/* ---------------------------------------------------------------------
55	 * Initialise SCR_EL3, setting all fields rather than relying on hw.
56	 * All fields are architecturally UNKNOWN on reset. The following fields
57	 * do not change during the TF lifetime. The remaining fields are set to
58	 * zero here but are updated ahead of transitioning to a lower EL in the
59	 * function cm_init_context_common().
60	 *
61	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
62	 *  EL2, EL1 and EL0 are not trapped to EL3.
63	 *
64	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
65	 *  EL2, EL1 and EL0 are not trapped to EL3.
66	 *
67	 * SCR_EL3.SIF: Set to one to disable instruction fetches from
68	 *  Non-secure memory.
69	 *
70	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
71	 *  both Security states and both Execution states.
72	 *
73	 * SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts
74	 *  to EL3 when executing at any EL.
75	 *
76	 * SCR_EL3.{API,APK}: For Armv8.3 pointer authentication feature,
77	 * disable traps to EL3 when accessing key registers or using pointer
78	 * authentication instructions from lower ELs.
79	 * ---------------------------------------------------------------------
80	 */
81	mov_imm	x0, ((SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT) \
82			& ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT))
83#if CTX_INCLUDE_PAUTH_REGS
84	/*
85	 * If the pointer authentication registers are saved during world
86	 * switches, enable pointer authentication everywhere, as it is safe to
87	 * do so.
88	 */
89	orr	x0, x0, #(SCR_API_BIT | SCR_APK_BIT)
90#endif
91#if ENABLE_RME
92	/*
93	 * TODO: Settting the EEL2 bit to allow EL3 access to secure only registers
94	 * in context management. This will need to be refactored.
95	 */
96	orr	x0, x0, #SCR_EEL2_BIT
97#endif
98	msr	scr_el3, x0
99
100	/* ---------------------------------------------------------------------
101	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
102	 * Some fields are architecturally UNKNOWN on reset.
103	 *
104	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
105	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
106	 *  disabled from all ELs in Secure state.
107	 *
108	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
109	 *  privileged debug from S-EL1.
110	 *
111	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
112	 *  access to the powerdown debug registers do not trap to EL3.
113	 *
114	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
115	 *  debug registers, other than those registers that are controlled by
116	 *  MDCR_EL3.TDOSA.
117	 *
118	 * MDCR_EL3.TPM: Set to zero so that EL0, EL1, and EL2 System register
119	 *  accesses to all Performance Monitors registers do not trap to EL3.
120	 *
121	 * MDCR_EL3.SCCD: Set to one so that cycle counting by PMCCNTR_EL0 is
122	 *  prohibited in Secure state. This bit is RES0 in versions of the
123	 *  architecture with FEAT_PMUv3p5 not implemented, setting it to 1
124	 *  doesn't have any effect on them.
125	 *
126	 * MDCR_EL3.MCCD: Set to one so that cycle counting by PMCCNTR_EL0 is
127	 *  prohibited in EL3. This bit is RES0 in versions of the
128	 *  architecture with FEAT_PMUv3p7 not implemented, setting it to 1
129	 *  doesn't have any effect on them.
130	 *
131	 * MDCR_EL3.SPME: Set to zero so that event counting by the programmable
132	 *  counters PMEVCNTR<n>_EL0 is prohibited in Secure state. If ARMv8.2
133	 *  Debug is not implemented this bit does not have any effect on the
134	 *  counters unless there is support for the implementation defined
135	 *  authentication interface ExternalSecureNoninvasiveDebugEnabled().
136	 *
137	 * MDCR_EL3.NSTB, MDCR_EL3.NSTBE: Set to zero so that Trace Buffer
138	 *  owning security state is Secure state. If FEAT_TRBE is implemented,
139	 *  accesses to Trace Buffer control registers at EL2 and EL1 in any
140	 *  security state generates trap exceptions to EL3.
141	 *  If FEAT_TRBE is not implemented, these bits are RES0.
142	 *
143	 * MDCR_EL3.TTRF: Set to one so that access to trace filter control
144	 *  registers in non-monitor mode generate EL3 trap exception,
145	 *  unless the access generates a higher priority exception when trace
146	 *  filter control(FEAT_TRF) is implemented.
147	 *  When FEAT_TRF is not implemented, this bit is RES0.
148	 * ---------------------------------------------------------------------
149	 */
150	mov_imm	x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | \
151		      MDCR_SPD32(MDCR_SPD32_DISABLE) | MDCR_SCCD_BIT | \
152		      MDCR_MCCD_BIT) & ~(MDCR_SPME_BIT | MDCR_TDOSA_BIT | \
153		      MDCR_TDA_BIT | MDCR_TPM_BIT | MDCR_NSTB(MDCR_NSTB_EL1) | \
154		      MDCR_NSTBE | MDCR_TTRF_BIT))
155
156	mrs	x1, id_aa64dfr0_el1
157	ubfx	x1, x1, #ID_AA64DFR0_TRACEFILT_SHIFT, #ID_AA64DFR0_TRACEFILT_LENGTH
158	cbz	x1, 1f
159	orr	x0, x0, #MDCR_TTRF_BIT
1601:
161	msr	mdcr_el3, x0
162
163	/* ---------------------------------------------------------------------
164	 * Initialise PMCR_EL0 setting all fields rather than relying
165	 * on hw. Some fields are architecturally UNKNOWN on reset.
166	 *
167	 * PMCR_EL0.LP: Set to one so that event counter overflow, that
168	 *  is recorded in PMOVSCLR_EL0[0-30], occurs on the increment
169	 *  that changes PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU
170	 *  is implemented. This bit is RES0 in versions of the architecture
171	 *  earlier than ARMv8.5, setting it to 1 doesn't have any effect
172	 *  on them.
173	 *
174	 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
175	 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
176	 *  that changes PMCCNTR_EL0[63] from 1 to 0.
177	 *
178	 * PMCR_EL0.DP: Set to one so that the cycle counter,
179	 *  PMCCNTR_EL0 does not count when event counting is prohibited.
180	 *
181	 * PMCR_EL0.X: Set to zero to disable export of events.
182	 *
183	 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
184	 *  counts on every clock cycle.
185	 * ---------------------------------------------------------------------
186	 */
187	mov_imm	x0, ((PMCR_EL0_RESET_VAL | PMCR_EL0_LP_BIT | \
188		      PMCR_EL0_LC_BIT | PMCR_EL0_DP_BIT) & \
189		    ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT))
190
191	msr	pmcr_el0, x0
192
193	/* ---------------------------------------------------------------------
194	 * Enable External Aborts and SError Interrupts now that the exception
195	 * vectors have been setup.
196	 * ---------------------------------------------------------------------
197	 */
198	msr	daifclr, #DAIF_ABT_BIT
199
200	/* ---------------------------------------------------------------------
201	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
202	 * All fields are architecturally UNKNOWN on reset.
203	 *
204	 * CPTR_EL3.TCPAC: Set to zero so that any accesses to CPACR_EL1,
205	 *  CPTR_EL2, CPACR, or HCPTR do not trap to EL3.
206	 *
207	 * CPTR_EL3.TTA: Set to one so that accesses to the trace system
208	 *  registers trap to EL3 from all exception levels and security
209	 *  states when system register trace is implemented.
210	 *  When system register trace is not implemented, this bit is RES0 and
211	 *  hence set to zero.
212	 *
213	 * CPTR_EL3.TTA: Set to zero so that System register accesses to the
214	 *  trace registers do not trap to EL3.
215	 *
216	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
217	 *  by Advanced SIMD, floating-point or SVE instructions (if implemented)
218	 *  do not trap to EL3.
219	 *
220	 * CPTR_EL3.TAM: Set to one so that Activity Monitor access is
221	 *  trapped to EL3 by default.
222	 *
223	 * CPTR_EL3.EZ: Set to zero so that all SVE functionality is trapped
224	 *  to EL3 by default.
225	 *
226	 * CPTR_EL3.ESM: Set to zero so that all SME functionality is trapped
227	 *  to EL3 by default.
228	 */
229
230	mov_imm x0, (CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TTA_BIT | TFP_BIT))
231	mrs	x1, id_aa64dfr0_el1
232	ubfx	x1, x1, #ID_AA64DFR0_TRACEVER_SHIFT, #ID_AA64DFR0_TRACEVER_LENGTH
233	cbz	x1, 1f
234	orr	x0, x0, #TTA_BIT
2351:
236	msr	cptr_el3, x0
237
238	/*
239	 * If Data Independent Timing (DIT) functionality is implemented,
240	 * always enable DIT in EL3
241	 */
242	mrs	x0, id_aa64pfr0_el1
243	ubfx	x0, x0, #ID_AA64PFR0_DIT_SHIFT, #ID_AA64PFR0_DIT_LENGTH
244	cmp	x0, #ID_AA64PFR0_DIT_SUPPORTED
245	bne	1f
246	mov	x0, #DIT_BIT
247	msr	DIT, x0
2481:
249	.endm
250
251/* -----------------------------------------------------------------------------
252 * This is the super set of actions that need to be performed during a cold boot
253 * or a warm boot in EL3. This code is shared by BL1 and BL31.
254 *
255 * This macro will always perform reset handling, architectural initialisations
256 * and stack setup. The rest of the actions are optional because they might not
257 * be needed, depending on the context in which this macro is called. This is
258 * why this macro is parameterised ; each parameter allows to enable/disable
259 * some actions.
260 *
261 *  _init_sctlr:
262 *	Whether the macro needs to initialise SCTLR_EL3, including configuring
263 *      the endianness of data accesses.
264 *
265 *  _warm_boot_mailbox:
266 *	Whether the macro needs to detect the type of boot (cold/warm). The
267 *	detection is based on the platform entrypoint address : if it is zero
268 *	then it is a cold boot, otherwise it is a warm boot. In the latter case,
269 *	this macro jumps on the platform entrypoint address.
270 *
271 *  _secondary_cold_boot:
272 *	Whether the macro needs to identify the CPU that is calling it: primary
273 *	CPU or secondary CPU. The primary CPU will be allowed to carry on with
274 *	the platform initialisations, while the secondaries will be put in a
275 *	platform-specific state in the meantime.
276 *
277 *	If the caller knows this macro will only be called by the primary CPU
278 *	then this parameter can be defined to 0 to skip this step.
279 *
280 * _init_memory:
281 *	Whether the macro needs to initialise the memory.
282 *
283 * _init_c_runtime:
284 *	Whether the macro needs to initialise the C runtime environment.
285 *
286 * _exception_vectors:
287 *	Address of the exception vectors to program in the VBAR_EL3 register.
288 *
289 * _pie_fixup_size:
290 *	Size of memory region to fixup Global Descriptor Table (GDT).
291 *
292 *	A non-zero value is expected when firmware needs GDT to be fixed-up.
293 *
294 * -----------------------------------------------------------------------------
295 */
296	.macro el3_entrypoint_common					\
297		_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot,	\
298		_init_memory, _init_c_runtime, _exception_vectors,	\
299		_pie_fixup_size
300
301	.if \_init_sctlr
302		/* -------------------------------------------------------------
303		 * This is the initialisation of SCTLR_EL3 and so must ensure
304		 * that all fields are explicitly set rather than relying on hw.
305		 * Some fields reset to an IMPLEMENTATION DEFINED value and
306		 * others are architecturally UNKNOWN on reset.
307		 *
308		 * SCTLR.EE: Set the CPU endianness before doing anything that
309		 *  might involve memory reads or writes. Set to zero to select
310		 *  Little Endian.
311		 *
312		 * SCTLR_EL3.WXN: For the EL3 translation regime, this field can
313		 *  force all memory regions that are writeable to be treated as
314		 *  XN (Execute-never). Set to zero so that this control has no
315		 *  effect on memory access permissions.
316		 *
317		 * SCTLR_EL3.SA: Set to zero to disable Stack Alignment check.
318		 *
319		 * SCTLR_EL3.A: Set to zero to disable Alignment fault checking.
320		 *
321		 * SCTLR.DSSBS: Set to zero to disable speculation store bypass
322		 *  safe behaviour upon exception entry to EL3.
323		 * -------------------------------------------------------------
324		 */
325		mov_imm	x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \
326				| SCTLR_SA_BIT | SCTLR_A_BIT | SCTLR_DSSBS_BIT))
327		msr	sctlr_el3, x0
328		isb
329	.endif /* _init_sctlr */
330
331#if DISABLE_MTPMU
332		bl	mtpmu_disable
333#endif
334
335	.if \_warm_boot_mailbox
336		/* -------------------------------------------------------------
337		 * This code will be executed for both warm and cold resets.
338		 * Now is the time to distinguish between the two.
339		 * Query the platform entrypoint address and if it is not zero
340		 * then it means it is a warm boot so jump to this address.
341		 * -------------------------------------------------------------
342		 */
343		bl	plat_get_my_entrypoint
344		cbz	x0, do_cold_boot
345		br	x0
346
347	do_cold_boot:
348	.endif /* _warm_boot_mailbox */
349
350	.if \_pie_fixup_size
351#if ENABLE_PIE
352		/*
353		 * ------------------------------------------------------------
354		 * If PIE is enabled fixup the Global descriptor Table only
355		 * once during primary core cold boot path.
356		 *
357		 * Compile time base address, required for fixup, is calculated
358		 * using "pie_fixup" label present within first page.
359		 * ------------------------------------------------------------
360		 */
361	pie_fixup:
362		ldr	x0, =pie_fixup
363		and	x0, x0, #~(PAGE_SIZE_MASK)
364		mov_imm	x1, \_pie_fixup_size
365		add	x1, x1, x0
366		bl	fixup_gdt_reloc
367#endif /* ENABLE_PIE */
368	.endif /* _pie_fixup_size */
369
370	/* ---------------------------------------------------------------------
371	 * Set the exception vectors.
372	 * ---------------------------------------------------------------------
373	 */
374	adr	x0, \_exception_vectors
375	msr	vbar_el3, x0
376	isb
377
378#if !(defined(IMAGE_BL2) && ENABLE_RME)
379	/* ---------------------------------------------------------------------
380	 * It is a cold boot.
381	 * Perform any processor specific actions upon reset e.g. cache, TLB
382	 * invalidations etc.
383	 * ---------------------------------------------------------------------
384	 */
385	bl	reset_handler
386#endif
387
388	el3_arch_init_common
389
390	.if \_secondary_cold_boot
391		/* -------------------------------------------------------------
392		 * Check if this is a primary or secondary CPU cold boot.
393		 * The primary CPU will set up the platform while the
394		 * secondaries are placed in a platform-specific state until the
395		 * primary CPU performs the necessary actions to bring them out
396		 * of that state and allows entry into the OS.
397		 * -------------------------------------------------------------
398		 */
399		bl	plat_is_my_cpu_primary
400		cbnz	w0, do_primary_cold_boot
401
402		/* This is a cold boot on a secondary CPU */
403		bl	plat_secondary_cold_boot_setup
404		/* plat_secondary_cold_boot_setup() is not supposed to return */
405		bl	el3_panic
406
407	do_primary_cold_boot:
408	.endif /* _secondary_cold_boot */
409
410	/* ---------------------------------------------------------------------
411	 * Initialize memory now. Secondary CPU initialization won't get to this
412	 * point.
413	 * ---------------------------------------------------------------------
414	 */
415
416	.if \_init_memory
417		bl	platform_mem_init
418	.endif /* _init_memory */
419
420	/* ---------------------------------------------------------------------
421	 * Init C runtime environment:
422	 *   - Zero-initialise the NOBITS sections. There are 2 of them:
423	 *       - the .bss section;
424	 *       - the coherent memory section (if any).
425	 *   - Relocate the data section from ROM to RAM, if required.
426	 * ---------------------------------------------------------------------
427	 */
428	.if \_init_c_runtime
429#if defined(IMAGE_BL31) || (defined(IMAGE_BL2) && \
430	((BL2_AT_EL3 && BL2_INV_DCACHE) || ENABLE_RME))
431		/* -------------------------------------------------------------
432		 * Invalidate the RW memory used by the BL31 image. This
433		 * includes the data and NOBITS sections. This is done to
434		 * safeguard against possible corruption of this memory by
435		 * dirty cache lines in a system cache as a result of use by
436		 * an earlier boot loader stage. If PIE is enabled however,
437		 * RO sections including the GOT may be modified during
438                 * pie fixup. Therefore, to be on the safe side, invalidate
439		 * the entire image region if PIE is enabled.
440		 * -------------------------------------------------------------
441		 */
442#if ENABLE_PIE
443#if SEPARATE_CODE_AND_RODATA
444		adrp	x0, __TEXT_START__
445		add	x0, x0, :lo12:__TEXT_START__
446#else
447		adrp	x0, __RO_START__
448		add	x0, x0, :lo12:__RO_START__
449#endif /* SEPARATE_CODE_AND_RODATA */
450#else
451		adrp	x0, __RW_START__
452		add	x0, x0, :lo12:__RW_START__
453#endif /* ENABLE_PIE */
454		adrp	x1, __RW_END__
455		add	x1, x1, :lo12:__RW_END__
456		sub	x1, x1, x0
457		bl	inv_dcache_range
458#if defined(IMAGE_BL31) && SEPARATE_NOBITS_REGION
459		adrp	x0, __NOBITS_START__
460		add	x0, x0, :lo12:__NOBITS_START__
461		adrp	x1, __NOBITS_END__
462		add	x1, x1, :lo12:__NOBITS_END__
463		sub	x1, x1, x0
464		bl	inv_dcache_range
465#endif
466#endif
467		adrp	x0, __BSS_START__
468		add	x0, x0, :lo12:__BSS_START__
469
470		adrp	x1, __BSS_END__
471		add	x1, x1, :lo12:__BSS_END__
472		sub	x1, x1, x0
473		bl	zeromem
474
475#if USE_COHERENT_MEM
476		adrp	x0, __COHERENT_RAM_START__
477		add	x0, x0, :lo12:__COHERENT_RAM_START__
478		adrp	x1, __COHERENT_RAM_END_UNALIGNED__
479		add	x1, x1, :lo12: __COHERENT_RAM_END_UNALIGNED__
480		sub	x1, x1, x0
481		bl	zeromem
482#endif
483
484#if defined(IMAGE_BL1) || (defined(IMAGE_BL2) && BL2_AT_EL3 && BL2_IN_XIP_MEM)
485		adrp	x0, __DATA_RAM_START__
486		add	x0, x0, :lo12:__DATA_RAM_START__
487		adrp	x1, __DATA_ROM_START__
488		add	x1, x1, :lo12:__DATA_ROM_START__
489		adrp	x2, __DATA_RAM_END__
490		add	x2, x2, :lo12:__DATA_RAM_END__
491		sub	x2, x2, x0
492		bl	memcpy16
493#endif
494	.endif /* _init_c_runtime */
495
496	/* ---------------------------------------------------------------------
497	 * Use SP_EL0 for the C runtime stack.
498	 * ---------------------------------------------------------------------
499	 */
500	msr	spsel, #0
501
502	/* ---------------------------------------------------------------------
503	 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
504	 * the MMU is enabled. There is no risk of reading stale stack memory
505	 * after enabling the MMU as only the primary CPU is running at the
506	 * moment.
507	 * ---------------------------------------------------------------------
508	 */
509	bl	plat_set_my_stack
510
511#if STACK_PROTECTOR_ENABLED
512	.if \_init_c_runtime
513	bl	update_stack_protector_canary
514	.endif /* _init_c_runtime */
515#endif
516	.endm
517
518	.macro	apply_at_speculative_wa
519#if ERRATA_SPECULATIVE_AT
520	/*
521	 * Explicitly save x30 so as to free up a register and to enable
522	 * branching and also, save x29 which will be used in the called
523	 * function
524	 */
525	stp	x29, x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
526	bl	save_and_update_ptw_el1_sys_regs
527	ldp	x29, x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
528#endif
529	.endm
530
531	.macro	restore_ptw_el1_sys_regs
532#if ERRATA_SPECULATIVE_AT
533	/* -----------------------------------------------------------
534	 * In case of ERRATA_SPECULATIVE_AT, must follow below order
535	 * to ensure that page table walk is not enabled until
536	 * restoration of all EL1 system registers. TCR_EL1 register
537	 * should be updated at the end which restores previous page
538	 * table walk setting of stage1 i.e.(TCR_EL1.EPDx) bits. ISB
539	 * ensures that CPU does below steps in order.
540	 *
541	 * 1. Ensure all other system registers are written before
542	 *    updating SCTLR_EL1 using ISB.
543	 * 2. Restore SCTLR_EL1 register.
544	 * 3. Ensure SCTLR_EL1 written successfully using ISB.
545	 * 4. Restore TCR_EL1 register.
546	 * -----------------------------------------------------------
547	 */
548	isb
549	ldp	x28, x29, [sp, #CTX_EL1_SYSREGS_OFFSET + CTX_SCTLR_EL1]
550	msr	sctlr_el1, x28
551	isb
552	msr	tcr_el1, x29
553#endif
554	.endm
555
556#endif /* EL3_COMMON_MACROS_S */
557