1 /*
2  * Copyright 2018-2021 NXP
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <endian.h>
8 
9 #include <arch.h>
10 #include <caam.h>
11 #include <cassert.h>
12 #include <cci.h>
13 #include <common/debug.h>
14 #include <dcfg.h>
15 #include <i2c.h>
16 #include <lib/xlat_tables/xlat_tables_v2.h>
17 #include <ls_interconnect.h>
18 #include <mmio.h>
19 #ifdef POLICY_FUSE_PROVISION
20 #include <nxp_gpio.h>
21 #endif
22 #if TRUSTED_BOARD_BOOT
23 #include <nxp_smmu.h>
24 #endif
25 #include <nxp_timer.h>
26 #ifdef CONFIG_OCRAM_ECC_EN
27 #include <ocram.h>
28 #endif
29 #include <plat_console.h>
30 #include <plat_gic.h>
31 #include <plat_tzc400.h>
32 #include <pmu.h>
33 #include <scfg.h>
34 #if defined(NXP_SFP_ENABLED)
35 #include <sfp.h>
36 #endif
37 
38 #include <errata.h>
39 #include "plat_common.h"
40 #include "platform_def.h"
41 #include "soc.h"
42 
43 static dcfg_init_info_t dcfg_init_data = {
44 	.g_nxp_dcfg_addr = NXP_DCFG_ADDR,
45 	.nxp_sysclk_freq = NXP_SYSCLK_FREQ,
46 	.nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
47 	.nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
48 };
49 
50 static struct soc_type soc_list[] =  {
51 	SOC_ENTRY(LS1017AN, LS1017AN, 1, 1),
52 	SOC_ENTRY(LS1017AE, LS1017AE, 1, 1),
53 	SOC_ENTRY(LS1018AN, LS1018AN, 1, 1),
54 	SOC_ENTRY(LS1018AE, LS1018AE, 1, 1),
55 	SOC_ENTRY(LS1027AN, LS1027AN, 1, 2),
56 	SOC_ENTRY(LS1027AE, LS1027AE, 1, 2),
57 	SOC_ENTRY(LS1028AN, LS1028AN, 1, 2),
58 	SOC_ENTRY(LS1028AE, LS1028AE, 1, 2),
59 };
60 
61 CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
62 	assert_invalid_ls1028a_cluster_count);
63 
64 /*
65  * Function returns the base counter frequency
66  * after reading the first entry at CNTFID0 (0x20 offset).
67  *
68  * Function is used by:
69  *   1. ARM common code for PSCI management.
70  *   2. ARM Generic Timer init.
71  *
72  */
plat_get_syscnt_freq2(void)73 unsigned int plat_get_syscnt_freq2(void)
74 {
75 	unsigned int counter_base_frequency;
76 	/*
77 	 * Below register specifies the base frequency of the system counter.
78 	 * As per NXP Board Manuals:
79 	 * The system counter always works with SYS_REF_CLK/4 frequency clock.
80 	 */
81 	counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
82 
83 	return counter_base_frequency;
84 }
85 
86 #ifdef IMAGE_BL2
87 
88 #ifdef POLICY_FUSE_PROVISION
89 static gpio_init_info_t gpio_init_data = {
90 	.gpio1_base_addr = NXP_GPIO1_ADDR,
91 	.gpio2_base_addr = NXP_GPIO2_ADDR,
92 	.gpio3_base_addr = NXP_GPIO3_ADDR,
93 };
94 #endif
95 
soc_preload_setup(void)96 void soc_preload_setup(void)
97 {
98 }
99 
soc_early_init(void)100 void soc_early_init(void)
101 {
102 	uint8_t num_clusters, cores_per_cluster;
103 
104 #ifdef CONFIG_OCRAM_ECC_EN
105 	ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
106 #endif
107 	dcfg_init(&dcfg_init_data);
108 	enable_timer_base_to_cluster(NXP_PMU_ADDR);
109 	enable_core_tb(NXP_PMU_ADDR);
110 	dram_regions_info_t *dram_regions_info = get_dram_regions_info();
111 
112 #ifdef POLICY_FUSE_PROVISION
113 	gpio_init(&gpio_init_data);
114 	sec_init(NXP_CAAM_ADDR);
115 #endif
116 
117 #if LOG_LEVEL > 0
118 	/* Initialize the console to provide early debug support */
119 	plat_console_init(NXP_CONSOLE_ADDR,
120 				NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
121 #endif
122 	enum  boot_device dev = get_boot_dev();
123 	/*
124 	 * Mark the buffer for SD in OCRAM as non secure.
125 	 * The buffer is assumed to be at end of OCRAM for
126 	 * the logic below to calculate TZPC programming
127 	 */
128 	if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) {
129 		/*
130 		 * Calculate the region in OCRAM which is secure
131 		 * The buffer for SD needs to be marked non-secure
132 		 * to allow SD to do DMA operations on it
133 		 */
134 		uint32_t secure_region = (NXP_OCRAM_SIZE - NXP_SD_BLOCK_BUF_SIZE);
135 		uint32_t mask = secure_region/TZPC_BLOCK_SIZE;
136 
137 		mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask);
138 
139 		/* Add the entry for buffer in MMU Table */
140 		mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
141 				NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS);
142 	}
143 
144 #if TRUSTED_BOARD_BOOT
145 	uint32_t mode;
146 
147 	sfp_init(NXP_SFP_ADDR);
148 
149 	/*
150 	 * For secure boot disable SMMU.
151 	 * Later when platform security policy comes in picture,
152 	 * this might get modified based on the policy
153 	 */
154 	if (check_boot_mode_secure(&mode) == true) {
155 		bypass_smmu(NXP_SMMU_ADDR);
156 	}
157 
158 	/*
159 	 * For Mbedtls currently crypto is not supported via CAAM
160 	 * enable it when that support is there. In tbbr.mk
161 	 * the CAAM_INTEG is set as 0.
162 	 */
163 #ifndef MBEDTLS_X509
164 	/* Initialize the crypto accelerator if enabled */
165 	if (is_sec_enabled()) {
166 		sec_init(NXP_CAAM_ADDR);
167 	} else {
168 		INFO("SEC is disabled.\n");
169 	}
170 #endif
171 #endif
172 
173 	/* Set eDDRTQ for DDR performance */
174 	scfg_setbits32((void *)(NXP_SCFG_ADDR + 0x210), 0x1f1f1f1f);
175 
176 	soc_errata();
177 
178 	/*
179 	 * Initialize Interconnect for this cluster during cold boot.
180 	 * No need for locks as no other CPU is active.
181 	 */
182 	cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
183 
184 	/*
185 	 * Enable Interconnect coherency for the primary CPU's cluster.
186 	 */
187 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
188 	plat_ls_interconnect_enter_coherency(num_clusters);
189 
190 	delay_timer_init(NXP_TIMER_ADDR);
191 	i2c_init(NXP_I2C_ADDR);
192 	dram_regions_info->total_dram_size = init_ddr();
193 }
194 
soc_bl2_prepare_exit(void)195 void soc_bl2_prepare_exit(void)
196 {
197 #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
198 	set_sfp_wr_disable();
199 #endif
200 }
201 
202 /*
203  * This function returns the boot device based on RCW_SRC
204  */
get_boot_dev(void)205 enum boot_device get_boot_dev(void)
206 {
207 	enum boot_device src = BOOT_DEVICE_NONE;
208 	uint32_t porsr1;
209 	uint32_t rcw_src;
210 
211 	porsr1 = read_reg_porsr1();
212 
213 	rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
214 	switch (rcw_src) {
215 	case FLEXSPI_NOR:
216 		src = BOOT_DEVICE_FLEXSPI_NOR;
217 		INFO("RCW BOOT SRC is FLEXSPI NOR\n");
218 		break;
219 	case FLEXSPI_NAND2K_VAL:
220 	case FLEXSPI_NAND4K_VAL:
221 		INFO("RCW BOOT SRC is FLEXSPI NAND\n");
222 		src = BOOT_DEVICE_FLEXSPI_NAND;
223 		break;
224 	case SDHC1_VAL:
225 		src = BOOT_DEVICE_EMMC;
226 		INFO("RCW BOOT SRC is SD\n");
227 		break;
228 	case SDHC2_VAL:
229 		src = BOOT_DEVICE_SDHC2_EMMC;
230 		INFO("RCW BOOT SRC is EMMC\n");
231 		break;
232 	default:
233 		break;
234 	}
235 
236 	return src;
237 }
238 
239 /*
240  * This function sets up access permissions on memory regions
241  ****************************************************************************/
soc_mem_access(void)242 void soc_mem_access(void)
243 {
244 	dram_regions_info_t *info_dram_regions = get_dram_regions_info();
245 	struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
246 	int dram_idx = 0;
247 	/* index 0 is reserved for region-0 */
248 	int index = 1;
249 
250 	for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions;
251 	     dram_idx++) {
252 		if (info_dram_regions->region[dram_idx].size == 0) {
253 			ERROR("DDR init failure, or");
254 			ERROR("DRAM regions not populated correctly.\n");
255 			break;
256 		}
257 
258 		index = populate_tzc400_reg_list(tzc400_reg_list,
259 				dram_idx, index,
260 				info_dram_regions->region[dram_idx].addr,
261 				info_dram_regions->region[dram_idx].size,
262 				NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
263 	}
264 
265 	mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list);
266 }
267 
268 #else
269 
270 static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2];
271 /*
272  * This function dynamically constructs the topology according to
273  *  SoC Flavor and returns it.
274  */
plat_get_power_domain_tree_desc(void)275 const unsigned char *plat_get_power_domain_tree_desc(void)
276 {
277 	uint8_t num_clusters, cores_per_cluster;
278 	unsigned int i;
279 
280 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
281 	/*
282 	 * The highest level is the system level. The next level is constituted
283 	 * by clusters and then cores in clusters.
284 	 */
285 	_power_domain_tree_desc[0] = 1;
286 	_power_domain_tree_desc[1] = num_clusters;
287 
288 	for (i = 0; i < _power_domain_tree_desc[1]; i++)
289 		_power_domain_tree_desc[i + 2] = cores_per_cluster;
290 
291 	return _power_domain_tree_desc;
292 }
293 
294 /*
295  * This function returns the core count within the cluster corresponding to
296  * `mpidr`.
297  */
plat_ls_get_cluster_core_count(u_register_t mpidr)298 unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
299 {
300 	uint8_t num_clusters, cores_per_cluster;
301 
302 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
303 	return num_clusters;
304 }
305 
soc_early_platform_setup2(void)306 void soc_early_platform_setup2(void)
307 {
308 	dcfg_init(&dcfg_init_data);
309 	/* Initialize system level generic timer for Socs */
310 	delay_timer_init(NXP_TIMER_ADDR);
311 
312 #if LOG_LEVEL > 0
313 	/* Initialize the console to provide early debug support */
314 	plat_console_init(NXP_CONSOLE_ADDR,
315 				NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
316 #endif
317 }
318 
soc_platform_setup(void)319 void soc_platform_setup(void)
320 {
321 	/* Initialize the GIC driver, cpu and distributor interfaces */
322 	static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
323 	static interrupt_prop_t ls_interrupt_props[] = {
324 		PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
325 		PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
326 	};
327 
328 	plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
329 				PLATFORM_CORE_COUNT,
330 				ls_interrupt_props,
331 				ARRAY_SIZE(ls_interrupt_props),
332 				target_mask_array,
333 				plat_core_pos);
334 
335 	plat_ls_gic_init();
336 	enable_init_timer();
337 }
338 
339 /* This function initializes the soc from the BL31 module */
soc_init(void)340 void soc_init(void)
341 {
342 	uint8_t num_clusters, cores_per_cluster;
343 
344 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
345 
346 	/* Low-level init of the soc */
347 	soc_init_lowlevel();
348 	_init_global_data();
349 	soc_init_percpu();
350 	_initialize_psci();
351 
352 	/*
353 	 * Initialize Interconnect for this cluster during cold boot.
354 	 * No need for locks as no other CPU is active.
355 	 */
356 	cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
357 
358 	/* Enable Interconnect coherency for the primary CPU's cluster. */
359 	plat_ls_interconnect_enter_coherency(num_clusters);
360 
361 	/* Set platform security policies */
362 	_set_platform_security();
363 
364 	/* Init SEC Engine which will be used by SiP */
365 	if (is_sec_enabled()) {
366 		sec_init(NXP_CAAM_ADDR);
367 	} else {
368 		INFO("SEC is disabled.\n");
369 	}
370 }
371 
372 #ifdef NXP_WDOG_RESTART
wdog_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)373 static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags,
374 					  void *handle, void *cookie)
375 {
376 	uint8_t data = WDOG_RESET_FLAG;
377 
378 	wr_nv_app_data(WDT_RESET_FLAG_OFFSET,
379 			(uint8_t *)&data, sizeof(data));
380 
381 	mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT);
382 
383 	return 0;
384 }
385 #endif
386 
soc_runtime_setup(void)387 void soc_runtime_setup(void)
388 {
389 #ifdef NXP_WDOG_RESTART
390 	request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler);
391 #endif
392 }
393 
394 /* This function returns the total number of cores in the SoC. */
get_tot_num_cores(void)395 unsigned int get_tot_num_cores(void)
396 {
397 	uint8_t num_clusters, cores_per_cluster;
398 
399 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
400 	return (num_clusters * cores_per_cluster);
401 }
402 
403 /* This function returns the PMU IDLE Cluster mask. */
get_pmu_idle_cluster_mask(void)404 unsigned int get_pmu_idle_cluster_mask(void)
405 {
406 	uint8_t num_clusters, cores_per_cluster;
407 
408 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
409 	return ((1 << num_clusters) - 2);
410 }
411 
412 /* This function returns the PMU Flush Cluster mask. */
get_pmu_flush_cluster_mask(void)413 unsigned int get_pmu_flush_cluster_mask(void)
414 {
415 	uint8_t num_clusters, cores_per_cluster;
416 
417 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
418 	return ((1 << num_clusters) - 2);
419 }
420 
421 /* This function returns the PMU idle core mask. */
get_pmu_idle_core_mask(void)422 unsigned int get_pmu_idle_core_mask(void)
423 {
424 	return ((1 << get_tot_num_cores()) - 2);
425 }
426 
427 /* Function to return the SoC SYS CLK */
get_sys_clk(void)428 unsigned int get_sys_clk(void)
429 {
430 	return NXP_SYSCLK_FREQ;
431 }
432 #endif
433