1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 /*
8  * Top-level SMC handler for ZynqMP power management calls and
9  * IPI setup functions for communication with PMU.
10  */
11 
12 #include <errno.h>
13 
14 #include <common/runtime_svc.h>
15 #if ZYNQMP_WDT_RESTART
16 #include <arch_helpers.h>
17 #include <drivers/arm/gicv2.h>
18 #include <lib/mmio.h>
19 #include <lib/spinlock.h>
20 #include <plat/common/platform.h>
21 #endif
22 
23 #include <plat_private.h>
24 #include "pm_api_sys.h"
25 #include "pm_client.h"
26 #include "pm_ipi.h"
27 
28 #define PM_GET_CALLBACK_DATA	0xa01
29 #define PM_SET_SUSPEND_MODE	0xa02
30 #define PM_GET_TRUSTZONE_VERSION	0xa03
31 
32 /* pm_up = !0 - UP, pm_up = 0 - DOWN */
33 static int32_t pm_up, ipi_irq_flag;
34 
35 #if ZYNQMP_WDT_RESTART
36 static spinlock_t inc_lock;
37 static int active_cores = 0;
38 #endif
39 
40 
41 /**
42  * pm_context - Structure which contains data for power management
43  * @api_version		version of PM API, must match with one on PMU side
44  * @payload		payload array used to store received
45  *			data from ipi buffer registers
46  */
47 static struct {
48 	uint32_t api_version;
49 	uint32_t payload[PAYLOAD_ARG_CNT];
50 } pm_ctx;
51 
52 #if ZYNQMP_WDT_RESTART
53 /**
54  * trigger_wdt_restart() - Trigger warm restart event to APU cores
55  *
56  * This function triggers SGI for all active APU CPUs. SGI handler then
57  * power down CPU and call system reset.
58  */
trigger_wdt_restart(void)59 static void trigger_wdt_restart(void)
60 {
61 	uint32_t core_count = 0;
62 	uint32_t core_status[3];
63 	uint32_t target_cpu_list = 0;
64 	int i;
65 
66 	for (i = 0; i < 4; i++) {
67 		pm_get_node_status(NODE_APU_0 + i, core_status);
68 		if (core_status[0] == 1) {
69 			core_count++;
70 			target_cpu_list |= (1 << i);
71 		}
72 	}
73 
74 	spin_lock(&inc_lock);
75 	active_cores = core_count;
76 	spin_unlock(&inc_lock);
77 
78 	INFO("Active Cores: %d\n", active_cores);
79 
80 	for (i = PLATFORM_CORE_COUNT - 1; i >= 0; i--) {
81 		if (target_cpu_list & (1 << i)) {
82 			/* trigger SGI to active cores */
83 			plat_ic_raise_el3_sgi(ARM_IRQ_SEC_SGI_7, i);
84 		}
85 	}
86 }
87 
88 /**
89  * ttc_fiq_handler() - TTC Handler for timer event
90  * @id         number of the highest priority pending interrupt of the type
91  *             that this handler was registered for
92  * @flags      security state, bit[0]
93  * @handler    pointer to 'cpu_context' structure of the current CPU for the
94  *             security state specified in the 'flags' parameter
95  * @cookie     unused
96  *
97  * Function registered as INTR_TYPE_EL3 interrupt handler
98  *
99  * When WDT event is received in PMU, PMU needs to notify master to do cleanup
100  * if required. PMU sets up timer and starts timer to overflow in zero time upon
101  * WDT event. ATF handles this timer event and takes necessary action required
102  * for warm restart.
103  *
104  * In presence of non-secure software layers (EL1/2) sets the interrupt
105  * at registered entrance in GIC and informs that PMU responsed or demands
106  * action.
107  */
ttc_fiq_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)108 static uint64_t ttc_fiq_handler(uint32_t id, uint32_t flags, void *handle,
109                                void *cookie)
110 {
111 	INFO("BL31: Got TTC FIQ\n");
112 
113 	plat_ic_end_of_interrupt(id);
114 
115 	/* Clear TTC interrupt by reading interrupt register */
116 	mmio_read_32(TTC3_INTR_REGISTER_1);
117 
118 	/* Disable the timer interrupts */
119 	mmio_write_32(TTC3_INTR_ENABLE_1, 0);
120 
121 	trigger_wdt_restart();
122 
123 	return 0;
124 }
125 
126 /**
127  * zynqmp_sgi7_irq() - Handler for SGI7 IRQ
128  * @id         number of the highest priority pending interrupt of the type
129  *             that this handler was registered for
130  * @flags      security state, bit[0]
131  * @handler    pointer to 'cpu_context' structure of the current CPU for the
132  *             security state specified in the 'flags' parameter
133  * @cookie     unused
134  *
135  * Function registered as INTR_TYPE_EL3 interrupt handler
136  *
137  * On receiving WDT event from PMU, ATF generates SGI7 to all running CPUs.
138  * In response to SGI7 interrupt, each CPUs do clean up if required and last
139  * running CPU calls system restart.
140  */
zynqmp_sgi7_irq(uint32_t id,uint32_t flags,void * handle,void * cookie)141 static uint64_t __unused __dead2 zynqmp_sgi7_irq(uint32_t id, uint32_t flags,
142                                                 void *handle, void *cookie)
143 {
144 	int i;
145 	uint32_t value;
146 
147 	/* enter wfi and stay there */
148 	INFO("Entering wfi\n");
149 
150 	spin_lock(&inc_lock);
151 	active_cores--;
152 
153 	for (i = 0; i < 4; i++) {
154 		mmio_write_32(BASE_GICD_BASE + GICD_CPENDSGIR + 4 * i,
155 				0xffffffff);
156 	}
157 
158 	spin_unlock(&inc_lock);
159 
160 	if (active_cores == 0) {
161 		pm_mmio_read(PMU_GLOBAL_GEN_STORAGE4, &value);
162 		value = (value & RESTART_SCOPE_MASK) >> RESTART_SCOPE_SHIFT;
163 		pm_system_shutdown(PMF_SHUTDOWN_TYPE_RESET, value);
164 	}
165 
166 	/* enter wfi and stay there */
167 	while (1)
168 		wfi();
169 }
170 
171 /**
172  * pm_wdt_restart_setup() - Setup warm restart interrupts
173  *
174  * This function sets up handler for SGI7 and TTC interrupts
175  * used for warm restart.
176  */
pm_wdt_restart_setup(void)177 static int pm_wdt_restart_setup(void)
178 {
179 	int ret;
180 
181 	/* register IRQ handler for SGI7 */
182 	ret = request_intr_type_el3(ARM_IRQ_SEC_SGI_7, zynqmp_sgi7_irq);
183 	if (ret) {
184 		WARN("BL31: registering SGI7 interrupt failed\n");
185 		goto err;
186 	}
187 
188 	ret = request_intr_type_el3(IRQ_TTC3_1, ttc_fiq_handler);
189 	if (ret)
190 		WARN("BL31: registering TTC3 interrupt failed\n");
191 
192 err:
193 	return ret;
194 }
195 #endif
196 
197 /**
198  * pm_setup() - PM service setup
199  *
200  * @return	On success, the initialization function must return 0.
201  *		Any other return value will cause the framework to ignore
202  *		the service
203  *
204  * Initialization functions for ZynqMP power management for
205  * communicaton with PMU.
206  *
207  * Called from sip_svc_setup initialization function with the
208  * rt_svc_init signature.
209  */
pm_setup(void)210 int pm_setup(void)
211 {
212 	int status, ret;
213 
214 	status = pm_ipi_init(primary_proc);
215 
216 	ret = pm_get_api_version(&pm_ctx.api_version);
217 	if (pm_ctx.api_version < PM_VERSION) {
218 		ERROR("BL31: Platform Management API version error. Expected: "
219 		      "v%d.%d - Found: v%d.%d\n", PM_VERSION_MAJOR,
220 		      PM_VERSION_MINOR, pm_ctx.api_version >> 16,
221 		      pm_ctx.api_version & 0xFFFF);
222 		return -EINVAL;
223 	}
224 
225 #if ZYNQMP_WDT_RESTART
226 	status = pm_wdt_restart_setup();
227 	if (status)
228 		WARN("BL31: warm-restart setup failed\n");
229 #endif
230 
231 	if (status >= 0) {
232 		INFO("BL31: PM Service Init Complete: API v%d.%d\n",
233 		     PM_VERSION_MAJOR, PM_VERSION_MINOR);
234 		ret = 0;
235 	} else {
236 		INFO("BL31: PM Service Init Failed, Error Code %d!\n", status);
237 		ret = status;
238 	}
239 
240 	pm_up = !status;
241 
242 	return ret;
243 }
244 
245 /**
246  * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
247  * @smc_fid - Function Identifier
248  * @x1 - x4 - Arguments
249  * @cookie  - Unused
250  * @handler - Pointer to caller's context structure
251  *
252  * @return  - Unused
253  *
254  * Determines that smc_fid is valid and supported PM SMC Function ID from the
255  * list of pm_api_ids, otherwise completes the request with
256  * the unknown SMC Function ID
257  *
258  * The SMC calls for PM service are forwarded from SIP Service SMC handler
259  * function with rt_svc_handle signature
260  */
pm_smc_handler(uint32_t smc_fid,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)261 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
262 			uint64_t x4, void *cookie, void *handle, uint64_t flags)
263 {
264 	enum pm_ret_status ret;
265 
266 	uint32_t pm_arg[4];
267 
268 	/* Handle case where PM wasn't initialized properly */
269 	if (!pm_up)
270 		SMC_RET1(handle, SMC_UNK);
271 
272 	pm_arg[0] = (uint32_t)x1;
273 	pm_arg[1] = (uint32_t)(x1 >> 32);
274 	pm_arg[2] = (uint32_t)x2;
275 	pm_arg[3] = (uint32_t)(x2 >> 32);
276 
277 	switch (smc_fid & FUNCID_NUM_MASK) {
278 	/* PM API Functions */
279 	case PM_SELF_SUSPEND:
280 		ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
281 				      pm_arg[3]);
282 		SMC_RET1(handle, (uint64_t)ret);
283 
284 	case PM_REQ_SUSPEND:
285 		ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
286 				     pm_arg[3]);
287 		SMC_RET1(handle, (uint64_t)ret);
288 
289 	case PM_REQ_WAKEUP:
290 	{
291 		/* Use address flag is encoded in the 1st bit of the low-word */
292 		unsigned int set_addr = pm_arg[1] & 0x1;
293 		uint64_t address = (uint64_t)pm_arg[2] << 32;
294 
295 		address |= pm_arg[1] & (~0x1);
296 		ret = pm_req_wakeup(pm_arg[0], set_addr, address,
297 				    pm_arg[3]);
298 		SMC_RET1(handle, (uint64_t)ret);
299 	}
300 
301 	case PM_FORCE_POWERDOWN:
302 		ret = pm_force_powerdown(pm_arg[0], pm_arg[1]);
303 		SMC_RET1(handle, (uint64_t)ret);
304 
305 	case PM_ABORT_SUSPEND:
306 		ret = pm_abort_suspend(pm_arg[0]);
307 		SMC_RET1(handle, (uint64_t)ret);
308 
309 	case PM_SET_WAKEUP_SOURCE:
310 		ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2]);
311 		SMC_RET1(handle, (uint64_t)ret);
312 
313 	case PM_SYSTEM_SHUTDOWN:
314 		ret = pm_system_shutdown(pm_arg[0], pm_arg[1]);
315 		SMC_RET1(handle, (uint64_t)ret);
316 
317 	case PM_REQ_NODE:
318 		ret = pm_req_node(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
319 		SMC_RET1(handle, (uint64_t)ret);
320 
321 	case PM_RELEASE_NODE:
322 		ret = pm_release_node(pm_arg[0]);
323 		SMC_RET1(handle, (uint64_t)ret);
324 
325 	case PM_SET_REQUIREMENT:
326 		ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2],
327 					 pm_arg[3]);
328 		SMC_RET1(handle, (uint64_t)ret);
329 
330 	case PM_SET_MAX_LATENCY:
331 		ret = pm_set_max_latency(pm_arg[0], pm_arg[1]);
332 		SMC_RET1(handle, (uint64_t)ret);
333 
334 	case PM_GET_API_VERSION:
335 		/* Check is PM API version already verified */
336 		if (pm_ctx.api_version >= PM_VERSION) {
337 			if (!ipi_irq_flag) {
338 				/*
339 				 * Enable IPI IRQ
340 				 * assume the rich OS is OK to handle callback IRQs now.
341 				 * Even if we were wrong, it would not enable the IRQ in
342 				 * the GIC.
343 				 */
344 				pm_ipi_irq_enable(primary_proc);
345 				ipi_irq_flag = 1;
346 			}
347 			SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
348 				 ((uint64_t)pm_ctx.api_version << 32));
349 		}
350 
351 	case PM_SET_CONFIGURATION:
352 		ret = pm_set_configuration(pm_arg[0]);
353 		SMC_RET1(handle, (uint64_t)ret);
354 
355 	case PM_INIT_FINALIZE:
356 		ret = pm_init_finalize();
357 		SMC_RET1(handle, (uint64_t)ret);
358 
359 	case PM_GET_NODE_STATUS:
360 	{
361 		uint32_t buff[3];
362 
363 		ret = pm_get_node_status(pm_arg[0], buff);
364 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buff[0] << 32),
365 			 (uint64_t)buff[1] | ((uint64_t)buff[2] << 32));
366 	}
367 
368 	case PM_GET_OP_CHARACTERISTIC:
369 	{
370 		uint32_t result;
371 
372 		ret = pm_get_op_characteristic(pm_arg[0], pm_arg[1], &result);
373 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result << 32));
374 	}
375 
376 	case PM_REGISTER_NOTIFIER:
377 		ret = pm_register_notifier(pm_arg[0], pm_arg[1], pm_arg[2],
378 					   pm_arg[3]);
379 		SMC_RET1(handle, (uint64_t)ret);
380 
381 	case PM_RESET_ASSERT:
382 		ret = pm_reset_assert(pm_arg[0], pm_arg[1]);
383 		SMC_RET1(handle, (uint64_t)ret);
384 
385 	case PM_RESET_GET_STATUS:
386 	{
387 		uint32_t reset_status;
388 
389 		ret = pm_reset_get_status(pm_arg[0], &reset_status);
390 		SMC_RET1(handle, (uint64_t)ret |
391 			 ((uint64_t)reset_status << 32));
392 	}
393 
394 	/* PM memory access functions */
395 	case PM_MMIO_WRITE:
396 		ret = pm_mmio_write(pm_arg[0], pm_arg[1], pm_arg[2]);
397 		SMC_RET1(handle, (uint64_t)ret);
398 
399 	case PM_MMIO_READ:
400 	{
401 		uint32_t value;
402 
403 		ret = pm_mmio_read(pm_arg[0], &value);
404 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
405 	}
406 
407 	case PM_FPGA_LOAD:
408 		ret = pm_fpga_load(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
409 		SMC_RET1(handle, (uint64_t)ret);
410 
411 	case PM_FPGA_GET_STATUS:
412 	{
413 		uint32_t value;
414 
415 		ret = pm_fpga_get_status(&value);
416 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
417 	}
418 
419 	case PM_GET_CHIPID:
420 	{
421 		uint32_t result[2];
422 
423 		ret = pm_get_chipid(result);
424 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32),
425 			 result[1]);
426 	}
427 
428 	case PM_SECURE_RSA_AES:
429 		ret = pm_secure_rsaaes(pm_arg[0], pm_arg[1], pm_arg[2],
430 				       pm_arg[3]);
431 		SMC_RET1(handle, (uint64_t)ret);
432 
433 	case PM_GET_CALLBACK_DATA:
434 	{
435 		uint32_t result[4] = {0};
436 
437 		pm_get_callbackdata(result, ARRAY_SIZE(result));
438 		SMC_RET2(handle,
439 			 (uint64_t)result[0] | ((uint64_t)result[1] << 32),
440 			 (uint64_t)result[2] | ((uint64_t)result[3] << 32));
441 	}
442 
443 	case PM_PINCTRL_REQUEST:
444 		ret = pm_pinctrl_request(pm_arg[0]);
445 		SMC_RET1(handle, (uint64_t)ret);
446 
447 	case PM_PINCTRL_RELEASE:
448 		ret = pm_pinctrl_release(pm_arg[0]);
449 		SMC_RET1(handle, (uint64_t)ret);
450 
451 	case PM_PINCTRL_GET_FUNCTION:
452 	{
453 		uint32_t value = 0;
454 
455 		ret = pm_pinctrl_get_function(pm_arg[0], &value);
456 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
457 	}
458 
459 	case PM_PINCTRL_SET_FUNCTION:
460 		ret = pm_pinctrl_set_function(pm_arg[0], pm_arg[1]);
461 		SMC_RET1(handle, (uint64_t)ret);
462 
463 	case PM_PINCTRL_CONFIG_PARAM_GET:
464 	{
465 		uint32_t value;
466 
467 		ret = pm_pinctrl_get_config(pm_arg[0], pm_arg[1], &value);
468 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
469 	}
470 
471 	case PM_PINCTRL_CONFIG_PARAM_SET:
472 		ret = pm_pinctrl_set_config(pm_arg[0], pm_arg[1], pm_arg[2]);
473 		SMC_RET1(handle, (uint64_t)ret);
474 
475 	case PM_IOCTL:
476 	{
477 		uint32_t value;
478 
479 		ret = pm_ioctl(pm_arg[0], pm_arg[1], pm_arg[2],
480 			       pm_arg[3], &value);
481 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
482 	}
483 
484 	case PM_QUERY_DATA:
485 	{
486 		uint32_t data[4] = { 0 };
487 
488 		pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2],
489 			      pm_arg[3], data);
490 		SMC_RET2(handle, (uint64_t)data[0]  | ((uint64_t)data[1] << 32),
491 			 (uint64_t)data[2] | ((uint64_t)data[3] << 32));
492 	}
493 
494 	case PM_CLOCK_ENABLE:
495 		ret = pm_clock_enable(pm_arg[0]);
496 		SMC_RET1(handle, (uint64_t)ret);
497 
498 	case PM_CLOCK_DISABLE:
499 		ret = pm_clock_disable(pm_arg[0]);
500 		SMC_RET1(handle, (uint64_t)ret);
501 
502 	case PM_CLOCK_GETSTATE:
503 	{
504 		uint32_t value;
505 
506 		ret = pm_clock_getstate(pm_arg[0], &value);
507 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
508 	}
509 
510 	case PM_CLOCK_SETDIVIDER:
511 		ret = pm_clock_setdivider(pm_arg[0], pm_arg[1]);
512 		SMC_RET1(handle, (uint64_t)ret);
513 
514 	case PM_CLOCK_GETDIVIDER:
515 	{
516 		uint32_t value;
517 
518 		ret = pm_clock_getdivider(pm_arg[0], &value);
519 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
520 	}
521 
522 	case PM_CLOCK_SETRATE:
523 		ret = pm_clock_setrate(pm_arg[0],
524 		       ((uint64_t)pm_arg[2]) << 32 | pm_arg[1]);
525 
526 		SMC_RET1(handle, (uint64_t)ret);
527 
528 	case PM_CLOCK_GETRATE:
529 	{
530 		uint64_t value;
531 
532 		ret = pm_clock_getrate(pm_arg[0], &value);
533 		SMC_RET2(handle, (uint64_t)ret |
534 				  (((uint64_t)value & 0xFFFFFFFFU) << 32U),
535 			 (value >> 32U) & 0xFFFFFFFFU);
536 
537 	}
538 
539 	case PM_CLOCK_SETPARENT:
540 		ret = pm_clock_setparent(pm_arg[0], pm_arg[1]);
541 		SMC_RET1(handle, (uint64_t)ret);
542 
543 	case PM_CLOCK_GETPARENT:
544 	{
545 		uint32_t value;
546 
547 		ret = pm_clock_getparent(pm_arg[0], &value);
548 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
549 	}
550 
551 	case PM_GET_TRUSTZONE_VERSION:
552 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
553 			 ((uint64_t)ZYNQMP_TZ_VERSION << 32));
554 
555 	case PM_SET_SUSPEND_MODE:
556 		ret = pm_set_suspend_mode(pm_arg[0]);
557 		SMC_RET1(handle, (uint64_t)ret);
558 
559 	case PM_SECURE_SHA:
560 		ret = pm_sha_hash(pm_arg[0], pm_arg[1], pm_arg[2],
561 				pm_arg[3]);
562 		SMC_RET1(handle, (uint64_t)ret);
563 
564 	case PM_SECURE_RSA:
565 		ret = pm_rsa_core(pm_arg[0], pm_arg[1], pm_arg[2],
566 				       pm_arg[3]);
567 		SMC_RET1(handle, (uint64_t)ret);
568 
569 	case PM_SECURE_IMAGE:
570 	{
571 		uint32_t result[2];
572 
573 		ret = pm_secure_image(pm_arg[0], pm_arg[1], pm_arg[2],
574 				      pm_arg[3], &result[0]);
575 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32),
576 			 result[1]);
577 	}
578 
579 	case PM_FPGA_READ:
580 	{
581 		uint32_t value;
582 
583 		ret = pm_fpga_read(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
584 				   &value);
585 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
586 	}
587 
588 	case PM_SECURE_AES:
589 	{
590 		uint32_t value;
591 
592 		ret = pm_aes_engine(pm_arg[0], pm_arg[1], &value);
593 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
594 	}
595 
596 	case PM_PLL_SET_PARAMETER:
597 		ret = pm_pll_set_parameter(pm_arg[0], pm_arg[1], pm_arg[2]);
598 		SMC_RET1(handle, (uint64_t)ret);
599 
600 	case PM_PLL_GET_PARAMETER:
601 	{
602 		uint32_t value;
603 
604 		ret = pm_pll_get_parameter(pm_arg[0], pm_arg[1], &value);
605 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value << 32));
606 	}
607 
608 	case PM_PLL_SET_MODE:
609 		ret = pm_pll_set_mode(pm_arg[0], pm_arg[1]);
610 		SMC_RET1(handle, (uint64_t)ret);
611 
612 	case PM_PLL_GET_MODE:
613 	{
614 		uint32_t mode;
615 
616 		ret = pm_pll_get_mode(pm_arg[0], &mode);
617 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)mode << 32));
618 	}
619 
620 	case PM_REGISTER_ACCESS:
621 	{
622 		uint32_t value;
623 
624 		ret = pm_register_access(pm_arg[0], pm_arg[1], pm_arg[2],
625 					 pm_arg[3], &value);
626 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
627 	}
628 
629 	case PM_EFUSE_ACCESS:
630 	{
631 		uint32_t value;
632 
633 		ret = pm_efuse_access(pm_arg[0], pm_arg[1], &value);
634 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
635 	}
636 
637 	default:
638 		WARN("Unimplemented PM Service Call: 0x%x\n", smc_fid);
639 		SMC_RET1(handle, SMC_UNK);
640 	}
641 }
642 
643 /**
644  * em_smc_handler() - SMC handler for EM-API calls coming from EL1/EL2.
645  * @smc_fid - Function Identifier
646  * @x1 - x4 - Arguments
647  * @cookie  - Unused
648  * @handler - Pointer to caller's context structure
649  *
650  * @return  - Unused
651  *
652  * Determines that smc_fid is valid and supported EM SMC Function ID from the
653  * list of em_api_ids, otherwise completes the request with
654  * the unknown SMC Function ID
655  *
656  * The SMC calls for EM service are forwarded from SIP Service SMC handler
657  * function with rt_svc_handle signature
658  */
em_smc_handler(uint32_t smc_fid,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)659 uint64_t em_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
660 			uint64_t x4, void *cookie, void *handle, uint64_t flags)
661 {
662 	enum pm_ret_status ret;
663 
664 	switch (smc_fid & FUNCID_NUM_MASK) {
665 	/* EM API Functions */
666 	case EM_SET_ACTION:
667 	{
668 		uint32_t value;
669 
670 		ret = em_set_action(&value);
671 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
672 	}
673 
674 	case EM_REMOVE_ACTION:
675 	{
676 		uint32_t value;
677 
678 		ret = em_remove_action(&value);
679 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
680 	}
681 
682 	case EM_SEND_ERRORS:
683 	{
684 		uint32_t value;
685 
686 		ret = em_send_errors(&value);
687 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
688 	}
689 
690 	default:
691 		WARN("Unimplemented EM Service Call: 0x%x\n", smc_fid);
692 		SMC_RET1(handle, SMC_UNK);
693 	}
694 }
695