1 /*
2  * Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <inttypes.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 #include <arch_helpers.h>
13 #include <arch_features.h>
14 #include <bl31/ehf.h>
15 #include <bl31/interrupt_mgmt.h>
16 #include <common/bl_common.h>
17 #include <common/debug.h>
18 #include <common/runtime_svc.h>
19 #include <lib/cassert.h>
20 #include <services/sdei.h>
21 
22 #include "sdei_private.h"
23 
24 /* x0-x17 GPREGS context */
25 #define SDEI_SAVED_GPREGS	18U
26 
27 /* Maximum preemption nesting levels: Critical priority and Normal priority */
28 #define MAX_EVENT_NESTING	2U
29 
30 /* Per-CPU SDEI state access macro */
31 #define sdei_get_this_pe_state()	(&cpu_state[plat_my_core_pos()])
32 
33 /* Structure to store information about an outstanding dispatch */
34 typedef struct sdei_dispatch_context {
35 	sdei_ev_map_t *map;
36 	uint64_t x[SDEI_SAVED_GPREGS];
37 	jmp_buf *dispatch_jmp;
38 
39 	/* Exception state registers */
40 	uint64_t elr_el3;
41 	uint64_t spsr_el3;
42 
43 #if DYNAMIC_WORKAROUND_CVE_2018_3639
44 	/* CVE-2018-3639 mitigation state */
45 	uint64_t disable_cve_2018_3639;
46 #endif
47 } sdei_dispatch_context_t;
48 
49 /* Per-CPU SDEI state data */
50 typedef struct sdei_cpu_state {
51 	sdei_dispatch_context_t dispatch_stack[MAX_EVENT_NESTING];
52 	unsigned short stack_top; /* Empty ascending */
53 	bool pe_masked;
54 	bool pending_enables;
55 } sdei_cpu_state_t;
56 
57 /* SDEI states for all cores in the system */
58 static sdei_cpu_state_t cpu_state[PLATFORM_CORE_COUNT];
59 
sdei_pe_mask(void)60 int64_t sdei_pe_mask(void)
61 {
62 	int64_t ret = 0;
63 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
64 
65 	/*
66 	 * Return value indicates whether this call had any effect in the mask
67 	 * status of this PE.
68 	 */
69 	if (!state->pe_masked) {
70 		state->pe_masked = true;
71 		ret = 1;
72 	}
73 
74 	return ret;
75 }
76 
sdei_pe_unmask(void)77 void sdei_pe_unmask(void)
78 {
79 	unsigned int i;
80 	sdei_ev_map_t *map;
81 	sdei_entry_t *se;
82 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
83 	uint64_t my_mpidr = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
84 
85 	/*
86 	 * If there are pending enables, iterate through the private mappings
87 	 * and enable those bound maps that are in enabled state. Also, iterate
88 	 * through shared mappings and enable interrupts of events that are
89 	 * targeted to this PE.
90 	 */
91 	if (state->pending_enables) {
92 		for_each_private_map(i, map) {
93 			se = get_event_entry(map);
94 			if (is_map_bound(map) && GET_EV_STATE(se, ENABLED))
95 				plat_ic_enable_interrupt(map->intr);
96 		}
97 
98 		for_each_shared_map(i, map) {
99 			se = get_event_entry(map);
100 
101 			sdei_map_lock(map);
102 			if (is_map_bound(map) && GET_EV_STATE(se, ENABLED) &&
103 					(se->reg_flags == SDEI_REGF_RM_PE) &&
104 					(se->affinity == my_mpidr)) {
105 				plat_ic_enable_interrupt(map->intr);
106 			}
107 			sdei_map_unlock(map);
108 		}
109 	}
110 
111 	state->pending_enables = false;
112 	state->pe_masked = false;
113 }
114 
115 /* Push a dispatch context to the dispatch stack */
push_dispatch(void)116 static sdei_dispatch_context_t *push_dispatch(void)
117 {
118 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
119 	sdei_dispatch_context_t *disp_ctx;
120 
121 	/* Cannot have more than max events */
122 	assert(state->stack_top < MAX_EVENT_NESTING);
123 
124 	disp_ctx = &state->dispatch_stack[state->stack_top];
125 	state->stack_top++;
126 
127 	return disp_ctx;
128 }
129 
130 /* Pop a dispatch context to the dispatch stack */
pop_dispatch(void)131 static sdei_dispatch_context_t *pop_dispatch(void)
132 {
133 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
134 
135 	if (state->stack_top == 0U)
136 		return NULL;
137 
138 	assert(state->stack_top <= MAX_EVENT_NESTING);
139 
140 	state->stack_top--;
141 
142 	return &state->dispatch_stack[state->stack_top];
143 }
144 
145 /* Retrieve the context at the top of dispatch stack */
get_outstanding_dispatch(void)146 static sdei_dispatch_context_t *get_outstanding_dispatch(void)
147 {
148 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
149 
150 	if (state->stack_top == 0U)
151 		return NULL;
152 
153 	assert(state->stack_top <= MAX_EVENT_NESTING);
154 
155 	return &state->dispatch_stack[state->stack_top - 1U];
156 }
157 
save_event_ctx(sdei_ev_map_t * map,void * tgt_ctx)158 static sdei_dispatch_context_t *save_event_ctx(sdei_ev_map_t *map,
159 		void *tgt_ctx)
160 {
161 	sdei_dispatch_context_t *disp_ctx;
162 	const gp_regs_t *tgt_gpregs;
163 	const el3_state_t *tgt_el3;
164 
165 	assert(tgt_ctx != NULL);
166 	tgt_gpregs = get_gpregs_ctx(tgt_ctx);
167 	tgt_el3 = get_el3state_ctx(tgt_ctx);
168 
169 	disp_ctx = push_dispatch();
170 	assert(disp_ctx != NULL);
171 	disp_ctx->map = map;
172 
173 	/* Save general purpose and exception registers */
174 	memcpy(disp_ctx->x, tgt_gpregs, sizeof(disp_ctx->x));
175 	disp_ctx->spsr_el3 = read_ctx_reg(tgt_el3, CTX_SPSR_EL3);
176 	disp_ctx->elr_el3 = read_ctx_reg(tgt_el3, CTX_ELR_EL3);
177 
178 	return disp_ctx;
179 }
180 
restore_event_ctx(const sdei_dispatch_context_t * disp_ctx,void * tgt_ctx)181 static void restore_event_ctx(const sdei_dispatch_context_t *disp_ctx, void *tgt_ctx)
182 {
183 	gp_regs_t *tgt_gpregs;
184 	el3_state_t *tgt_el3;
185 
186 	assert(tgt_ctx != NULL);
187 	tgt_gpregs = get_gpregs_ctx(tgt_ctx);
188 	tgt_el3 = get_el3state_ctx(tgt_ctx);
189 
190 	CASSERT(sizeof(disp_ctx->x) == (SDEI_SAVED_GPREGS * sizeof(uint64_t)),
191 			foo);
192 
193 	/* Restore general purpose and exception registers */
194 	memcpy(tgt_gpregs, disp_ctx->x, sizeof(disp_ctx->x));
195 	write_ctx_reg(tgt_el3, CTX_SPSR_EL3, disp_ctx->spsr_el3);
196 	write_ctx_reg(tgt_el3, CTX_ELR_EL3, disp_ctx->elr_el3);
197 
198 #if DYNAMIC_WORKAROUND_CVE_2018_3639
199 	cve_2018_3639_t *tgt_cve_2018_3639;
200 	tgt_cve_2018_3639 = get_cve_2018_3639_ctx(tgt_ctx);
201 
202 	/* Restore CVE-2018-3639 mitigation state */
203 	write_ctx_reg(tgt_cve_2018_3639, CTX_CVE_2018_3639_DISABLE,
204 		disp_ctx->disable_cve_2018_3639);
205 #endif
206 }
207 
save_secure_context(void)208 static void save_secure_context(void)
209 {
210 	cm_el1_sysregs_context_save(SECURE);
211 }
212 
213 /* Restore Secure context and arrange to resume it at the next ERET */
restore_and_resume_secure_context(void)214 static void restore_and_resume_secure_context(void)
215 {
216 	cm_el1_sysregs_context_restore(SECURE);
217 	cm_set_next_eret_context(SECURE);
218 }
219 
220 /*
221  * Restore Non-secure context and arrange to resume it at the next ERET. Return
222  * pointer to the Non-secure context.
223  */
restore_and_resume_ns_context(void)224 static cpu_context_t *restore_and_resume_ns_context(void)
225 {
226 	cpu_context_t *ns_ctx;
227 
228 	cm_el1_sysregs_context_restore(NON_SECURE);
229 	cm_set_next_eret_context(NON_SECURE);
230 
231 	ns_ctx = cm_get_context(NON_SECURE);
232 	assert(ns_ctx != NULL);
233 
234 	return ns_ctx;
235 }
236 
237 /*
238  * Prepare for ERET:
239  * - Set the ELR to the registered handler address
240  * - Set the SPSR register as described in the SDEI documentation and
241  *   the AArch64.TakeException() pseudocode function in
242  *   ARM DDI 0487F.c page J1-7635
243  */
244 
sdei_set_elr_spsr(sdei_entry_t * se,sdei_dispatch_context_t * disp_ctx)245 static void sdei_set_elr_spsr(sdei_entry_t *se, sdei_dispatch_context_t *disp_ctx)
246 {
247 	unsigned int client_el = sdei_client_el();
248 	u_register_t sdei_spsr = SPSR_64(client_el, MODE_SP_ELX,
249 					DISABLE_ALL_EXCEPTIONS);
250 
251 	u_register_t interrupted_pstate = disp_ctx->spsr_el3;
252 
253 	/* Check the SPAN bit in the client el SCTLR */
254 	u_register_t client_el_sctlr;
255 
256 	if (client_el == MODE_EL2) {
257 		client_el_sctlr = read_sctlr_el2();
258 	} else {
259 		client_el_sctlr = read_sctlr_el1();
260 	}
261 
262 	/*
263 	 * Check whether to force the PAN bit or use the value in the
264 	 * interrupted EL according to the check described in
265 	 * TakeException. Since the client can only be Non-Secure
266 	 * EL2 or El1 some of the conditions in ElIsInHost() we know
267 	 * will always be True.
268 	 * When the client_el is EL2 we know that there will be a SPAN
269 	 * bit in SCTLR_EL2 as we have already checked for the condition
270 	 * HCR_EL2.E2H = 1 and HCR_EL2.TGE = 1
271 	 */
272 	u_register_t hcr_el2 = read_hcr();
273 	bool el_is_in_host = is_armv8_1_vhe_present() &&
274 			     (hcr_el2 & HCR_TGE_BIT) &&
275 			     (hcr_el2 & HCR_E2H_BIT);
276 
277 	if (is_armv8_1_pan_present() &&
278 	    ((client_el == MODE_EL1) ||
279 		(client_el == MODE_EL2 && el_is_in_host)) &&
280 	    ((client_el_sctlr & SCTLR_SPAN_BIT) == 0U)) {
281 		sdei_spsr |=  SPSR_PAN_BIT;
282 	} else {
283 		sdei_spsr |= (interrupted_pstate & SPSR_PAN_BIT);
284 	}
285 
286 	/* If SSBS is implemented, take the value from the client el SCTLR */
287 	u_register_t ssbs_enabled = (read_id_aa64pfr1_el1()
288 					>> ID_AA64PFR1_EL1_SSBS_SHIFT)
289 					& ID_AA64PFR1_EL1_SSBS_MASK;
290 	if (ssbs_enabled != SSBS_UNAVAILABLE) {
291 		u_register_t  ssbs_bit = ((client_el_sctlr & SCTLR_DSSBS_BIT)
292 						>> SCTLR_DSSBS_SHIFT)
293 						<< SPSR_SSBS_SHIFT_AARCH64;
294 		sdei_spsr |= ssbs_bit;
295 	}
296 
297 	/* If MTE is implemented in the client el set the TCO bit */
298 	if (get_armv8_5_mte_support() >= MTE_IMPLEMENTED_ELX) {
299 		sdei_spsr |= SPSR_TCO_BIT_AARCH64;
300 	}
301 
302 	/* Take the DIT field from the pstate of the interrupted el */
303 	sdei_spsr |= (interrupted_pstate & SPSR_DIT_BIT);
304 
305 	cm_set_elr_spsr_el3(NON_SECURE, (uintptr_t) se->ep, sdei_spsr);
306 }
307 
308 /*
309  * Populate the Non-secure context so that the next ERET will dispatch to the
310  * SDEI client.
311  */
setup_ns_dispatch(sdei_ev_map_t * map,sdei_entry_t * se,cpu_context_t * ctx,jmp_buf * dispatch_jmp)312 static void setup_ns_dispatch(sdei_ev_map_t *map, sdei_entry_t *se,
313 		cpu_context_t *ctx, jmp_buf *dispatch_jmp)
314 {
315 	sdei_dispatch_context_t *disp_ctx;
316 
317 	/* Push the event and context */
318 	disp_ctx = save_event_ctx(map, ctx);
319 
320 	/*
321 	 * Setup handler arguments:
322 	 *
323 	 * - x0: Event number
324 	 * - x1: Handler argument supplied at the time of event registration
325 	 * - x2: Interrupted PC
326 	 * - x3: Interrupted SPSR
327 	 */
328 	SMC_SET_GP(ctx, CTX_GPREG_X0, (uint64_t) map->ev_num);
329 	SMC_SET_GP(ctx, CTX_GPREG_X1, se->arg);
330 	SMC_SET_GP(ctx, CTX_GPREG_X2, disp_ctx->elr_el3);
331 	SMC_SET_GP(ctx, CTX_GPREG_X3, disp_ctx->spsr_el3);
332 
333 	/* Setup the elr and spsr register to prepare for ERET */
334 	sdei_set_elr_spsr(se, disp_ctx);
335 
336 #if DYNAMIC_WORKAROUND_CVE_2018_3639
337 	cve_2018_3639_t *tgt_cve_2018_3639;
338 	tgt_cve_2018_3639 = get_cve_2018_3639_ctx(ctx);
339 
340 	/* Save CVE-2018-3639 mitigation state */
341 	disp_ctx->disable_cve_2018_3639 = read_ctx_reg(tgt_cve_2018_3639,
342 		CTX_CVE_2018_3639_DISABLE);
343 
344 	/* Force SDEI handler to execute with mitigation enabled by default */
345 	write_ctx_reg(tgt_cve_2018_3639, CTX_CVE_2018_3639_DISABLE, 0);
346 #endif
347 
348 	disp_ctx->dispatch_jmp = dispatch_jmp;
349 }
350 
351 /* Handle a triggered SDEI interrupt while events were masked on this PE */
handle_masked_trigger(sdei_ev_map_t * map,sdei_entry_t * se,sdei_cpu_state_t * state,unsigned int intr_raw)352 static void handle_masked_trigger(sdei_ev_map_t *map, sdei_entry_t *se,
353 		sdei_cpu_state_t *state, unsigned int intr_raw)
354 {
355 	uint64_t my_mpidr __unused = (read_mpidr_el1() & MPIDR_AFFINITY_MASK);
356 	bool disable = false;
357 
358 	/* Nothing to do for event 0 */
359 	if (map->ev_num == SDEI_EVENT_0)
360 		return;
361 
362 	/*
363 	 * For a private event, or for a shared event specifically routed to
364 	 * this CPU, we disable interrupt, leave the interrupt pending, and do
365 	 * EOI.
366 	 */
367 	if (is_event_private(map) || (se->reg_flags == SDEI_REGF_RM_PE))
368 		disable = true;
369 
370 	if (se->reg_flags == SDEI_REGF_RM_PE)
371 		assert(se->affinity == my_mpidr);
372 
373 	if (disable) {
374 		plat_ic_disable_interrupt(map->intr);
375 		plat_ic_set_interrupt_pending(map->intr);
376 		plat_ic_end_of_interrupt(intr_raw);
377 		state->pending_enables = true;
378 
379 		return;
380 	}
381 
382 	/*
383 	 * We just received a shared event with routing set to ANY PE. The
384 	 * interrupt can't be delegated on this PE as SDEI events are masked.
385 	 * However, because its routing mode is ANY, it is possible that the
386 	 * event can be delegated on any other PE that hasn't masked events.
387 	 * Therefore, we set the interrupt back pending so as to give other
388 	 * suitable PEs a chance of handling it.
389 	 */
390 	assert(plat_ic_is_spi(map->intr) != 0);
391 	plat_ic_set_interrupt_pending(map->intr);
392 
393 	/*
394 	 * Leaving the same interrupt pending also means that the same interrupt
395 	 * can target this PE again as soon as this PE leaves EL3. Whether and
396 	 * how often that happens depends on the implementation of GIC.
397 	 *
398 	 * We therefore call a platform handler to resolve this situation.
399 	 */
400 	plat_sdei_handle_masked_trigger(my_mpidr, map->intr);
401 
402 	/* This PE is masked. We EOI the interrupt, as it can't be delegated */
403 	plat_ic_end_of_interrupt(intr_raw);
404 }
405 
406 /* SDEI main interrupt handler */
sdei_intr_handler(uint32_t intr_raw,uint32_t flags,void * handle,void * cookie)407 int sdei_intr_handler(uint32_t intr_raw, uint32_t flags, void *handle,
408 		void *cookie)
409 {
410 	sdei_entry_t *se;
411 	cpu_context_t *ctx;
412 	sdei_ev_map_t *map;
413 	const sdei_dispatch_context_t *disp_ctx;
414 	unsigned int sec_state;
415 	sdei_cpu_state_t *state;
416 	uint32_t intr;
417 	jmp_buf dispatch_jmp;
418 	const uint64_t mpidr = read_mpidr_el1();
419 
420 	/*
421 	 * To handle an event, the following conditions must be true:
422 	 *
423 	 * 1. Event must be signalled
424 	 * 2. Event must be enabled
425 	 * 3. This PE must be a target PE for the event
426 	 * 4. PE must be unmasked for SDEI
427 	 * 5. If this is a normal event, no event must be running
428 	 * 6. If this is a critical event, no critical event must be running
429 	 *
430 	 * (1) and (2) are true when this function is running
431 	 * (3) is enforced in GIC by selecting the appropriate routing option
432 	 * (4) is satisfied by client calling PE_UNMASK
433 	 * (5) and (6) is enforced using interrupt priority, the RPR, in GIC:
434 	 *   - Normal SDEI events belong to Normal SDE priority class
435 	 *   - Critical SDEI events belong to Critical CSDE priority class
436 	 *
437 	 * The interrupt has already been acknowledged, and therefore is active,
438 	 * so no other PE can handle this event while we are at it.
439 	 *
440 	 * Find if this is an SDEI interrupt. There must be an event mapped to
441 	 * this interrupt
442 	 */
443 	intr = plat_ic_get_interrupt_id(intr_raw);
444 	map = find_event_map_by_intr(intr, (plat_ic_is_spi(intr) != 0));
445 	if (map == NULL) {
446 		ERROR("No SDEI map for interrupt %u\n", intr);
447 		panic();
448 	}
449 
450 	/*
451 	 * Received interrupt number must either correspond to event 0, or must
452 	 * be bound interrupt.
453 	 */
454 	assert((map->ev_num == SDEI_EVENT_0) || is_map_bound(map));
455 
456 	se = get_event_entry(map);
457 	state = sdei_get_this_pe_state();
458 
459 	if (state->pe_masked) {
460 		/*
461 		 * Interrupts received while this PE was masked can't be
462 		 * dispatched.
463 		 */
464 		SDEI_LOG("interrupt %u on %" PRIx64 " while PE masked\n",
465 			 map->intr, mpidr);
466 		if (is_event_shared(map))
467 			sdei_map_lock(map);
468 
469 		handle_masked_trigger(map, se, state, intr_raw);
470 
471 		if (is_event_shared(map))
472 			sdei_map_unlock(map);
473 
474 		return 0;
475 	}
476 
477 	/* Insert load barrier for signalled SDEI event */
478 	if (map->ev_num == SDEI_EVENT_0)
479 		dmbld();
480 
481 	if (is_event_shared(map))
482 		sdei_map_lock(map);
483 
484 	/* Assert shared event routed to this PE had been configured so */
485 	if (is_event_shared(map) && (se->reg_flags == SDEI_REGF_RM_PE)) {
486 		assert(se->affinity == (mpidr & MPIDR_AFFINITY_MASK));
487 	}
488 
489 	if (!can_sdei_state_trans(se, DO_DISPATCH)) {
490 		SDEI_LOG("SDEI event 0x%x can't be dispatched; state=0x%x\n",
491 				map->ev_num, se->state);
492 
493 		/*
494 		 * If the event is registered, leave the interrupt pending so
495 		 * that it's delivered when the event is enabled.
496 		 */
497 		if (GET_EV_STATE(se, REGISTERED))
498 			plat_ic_set_interrupt_pending(map->intr);
499 
500 		/*
501 		 * The interrupt was disabled or unregistered after the handler
502 		 * started to execute, which means now the interrupt is already
503 		 * disabled and we just need to EOI the interrupt.
504 		 */
505 		plat_ic_end_of_interrupt(intr_raw);
506 
507 		if (is_event_shared(map))
508 			sdei_map_unlock(map);
509 
510 		return 0;
511 	}
512 
513 	disp_ctx = get_outstanding_dispatch();
514 	if (is_event_critical(map)) {
515 		/*
516 		 * If this event is Critical, and if there's an outstanding
517 		 * dispatch, assert the latter is a Normal dispatch. Critical
518 		 * events can preempt an outstanding Normal event dispatch.
519 		 */
520 		if (disp_ctx != NULL)
521 			assert(is_event_normal(disp_ctx->map));
522 	} else {
523 		/*
524 		 * If this event is Normal, assert that there are no outstanding
525 		 * dispatches. Normal events can't preempt any outstanding event
526 		 * dispatches.
527 		 */
528 		assert(disp_ctx == NULL);
529 	}
530 
531 	sec_state = get_interrupt_src_ss(flags);
532 
533 	if (is_event_shared(map))
534 		sdei_map_unlock(map);
535 
536 	SDEI_LOG("ACK %" PRIx64 ", ev:0x%x ss:%d spsr:%lx ELR:%lx\n",
537 		 mpidr, map->ev_num, sec_state, read_spsr_el3(), read_elr_el3());
538 
539 	ctx = handle;
540 
541 	/*
542 	 * Check if we interrupted secure state. Perform a context switch so
543 	 * that we can delegate to NS.
544 	 */
545 	if (sec_state == SECURE) {
546 		save_secure_context();
547 		ctx = restore_and_resume_ns_context();
548 	}
549 
550 	/* Synchronously dispatch event */
551 	setup_ns_dispatch(map, se, ctx, &dispatch_jmp);
552 	begin_sdei_synchronous_dispatch(&dispatch_jmp);
553 
554 	/*
555 	 * We reach here when client completes the event.
556 	 *
557 	 * If the cause of dispatch originally interrupted the Secure world,
558 	 * resume Secure.
559 	 *
560 	 * No need to save the Non-secure context ahead of a world switch: the
561 	 * Non-secure context was fully saved before dispatch, and has been
562 	 * returned to its pre-dispatch state.
563 	 */
564 	if (sec_state == SECURE)
565 		restore_and_resume_secure_context();
566 
567 	/*
568 	 * The event was dispatched after receiving SDEI interrupt. With
569 	 * the event handling completed, EOI the corresponding
570 	 * interrupt.
571 	 */
572 	if ((map->ev_num != SDEI_EVENT_0) && !is_map_bound(map)) {
573 		ERROR("Invalid SDEI mapping: ev=0x%x\n", map->ev_num);
574 		panic();
575 	}
576 	plat_ic_end_of_interrupt(intr_raw);
577 
578 	return 0;
579 }
580 
581 /*
582  * Explicitly dispatch the given SDEI event.
583  *
584  * When calling this API, the caller must be prepared for the SDEI dispatcher to
585  * restore and make Non-secure context as active. This call returns only after
586  * the client has completed the dispatch. Then, the Non-secure context will be
587  * active, and the following ERET will return to Non-secure.
588  *
589  * Should the caller require re-entry to Secure, it must restore the Secure
590  * context and program registers for ERET.
591  */
sdei_dispatch_event(int ev_num)592 int sdei_dispatch_event(int ev_num)
593 {
594 	sdei_entry_t *se;
595 	sdei_ev_map_t *map;
596 	cpu_context_t *ns_ctx;
597 	sdei_dispatch_context_t *disp_ctx;
598 	sdei_cpu_state_t *state;
599 	jmp_buf dispatch_jmp;
600 
601 	/* Can't dispatch if events are masked on this PE */
602 	state = sdei_get_this_pe_state();
603 	if (state->pe_masked)
604 		return -1;
605 
606 	/* Event 0 can't be dispatched */
607 	if (ev_num == SDEI_EVENT_0)
608 		return -1;
609 
610 	/* Locate mapping corresponding to this event */
611 	map = find_event_map(ev_num);
612 	if (map == NULL)
613 		return -1;
614 
615 	/* Only explicit events can be dispatched */
616 	if (!is_map_explicit(map))
617 		return -1;
618 
619 	/* Examine state of dispatch stack */
620 	disp_ctx = get_outstanding_dispatch();
621 	if (disp_ctx != NULL) {
622 		/*
623 		 * There's an outstanding dispatch. If the outstanding dispatch
624 		 * is critical, no more dispatches are possible.
625 		 */
626 		if (is_event_critical(disp_ctx->map))
627 			return -1;
628 
629 		/*
630 		 * If the outstanding dispatch is Normal, only critical events
631 		 * can be dispatched.
632 		 */
633 		if (is_event_normal(map))
634 			return -1;
635 	}
636 
637 	se = get_event_entry(map);
638 	if (!can_sdei_state_trans(se, DO_DISPATCH))
639 		return -1;
640 
641 	/*
642 	 * Prepare for NS dispatch by restoring the Non-secure context and
643 	 * marking that as active.
644 	 */
645 	ns_ctx = restore_and_resume_ns_context();
646 
647 	/* Activate the priority corresponding to the event being dispatched */
648 	ehf_activate_priority(sdei_event_priority(map));
649 
650 	/* Dispatch event synchronously */
651 	setup_ns_dispatch(map, se, ns_ctx, &dispatch_jmp);
652 	begin_sdei_synchronous_dispatch(&dispatch_jmp);
653 
654 	/*
655 	 * We reach here when client completes the event.
656 	 *
657 	 * Deactivate the priority level that was activated at the time of
658 	 * explicit dispatch.
659 	 */
660 	ehf_deactivate_priority(sdei_event_priority(map));
661 
662 	return 0;
663 }
664 
end_sdei_synchronous_dispatch(jmp_buf * buffer)665 static void end_sdei_synchronous_dispatch(jmp_buf *buffer)
666 {
667 	longjmp(*buffer, 1);
668 }
669 
sdei_event_complete(bool resume,uint64_t pc)670 int sdei_event_complete(bool resume, uint64_t pc)
671 {
672 	sdei_dispatch_context_t *disp_ctx;
673 	sdei_entry_t *se;
674 	sdei_ev_map_t *map;
675 	cpu_context_t *ctx;
676 	sdei_action_t act;
677 	unsigned int client_el = sdei_client_el();
678 
679 	/* Return error if called without an active event */
680 	disp_ctx = get_outstanding_dispatch();
681 	if (disp_ctx == NULL)
682 		return SDEI_EDENY;
683 
684 	/* Validate resumption point */
685 	if (resume && (plat_sdei_validate_entry_point(pc, client_el) != 0))
686 		return SDEI_EDENY;
687 
688 	map = disp_ctx->map;
689 	assert(map != NULL);
690 	se = get_event_entry(map);
691 
692 	if (is_event_shared(map))
693 		sdei_map_lock(map);
694 
695 	act = resume ? DO_COMPLETE_RESUME : DO_COMPLETE;
696 	if (!can_sdei_state_trans(se, act)) {
697 		if (is_event_shared(map))
698 			sdei_map_unlock(map);
699 		return SDEI_EDENY;
700 	}
701 
702 	if (is_event_shared(map))
703 		sdei_map_unlock(map);
704 
705 	/* Having done sanity checks, pop dispatch */
706 	(void) pop_dispatch();
707 
708 	SDEI_LOG("EOI:%lx, %d spsr:%lx elr:%lx\n", read_mpidr_el1(),
709 			map->ev_num, read_spsr_el3(), read_elr_el3());
710 
711 	/*
712 	 * Restore Non-secure to how it was originally interrupted. Once done,
713 	 * it's up-to-date with the saved copy.
714 	 */
715 	ctx = cm_get_context(NON_SECURE);
716 	restore_event_ctx(disp_ctx, ctx);
717 
718 	if (resume) {
719 		/*
720 		 * Complete-and-resume call. Prepare the Non-secure context
721 		 * (currently active) for complete and resume.
722 		 */
723 		cm_set_elr_spsr_el3(NON_SECURE, pc, SPSR_64(client_el,
724 					MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
725 
726 		/*
727 		 * Make it look as if a synchronous exception were taken at the
728 		 * supplied Non-secure resumption point. Populate SPSR and
729 		 * ELR_ELx so that an ERET from there works as expected.
730 		 *
731 		 * The assumption is that the client, if necessary, would have
732 		 * saved any live content in these registers before making this
733 		 * call.
734 		 */
735 		if (client_el == MODE_EL2) {
736 			write_elr_el2(disp_ctx->elr_el3);
737 			write_spsr_el2(disp_ctx->spsr_el3);
738 		} else {
739 			/* EL1 */
740 			write_elr_el1(disp_ctx->elr_el3);
741 			write_spsr_el1(disp_ctx->spsr_el3);
742 		}
743 	}
744 
745 	/* End the outstanding dispatch */
746 	end_sdei_synchronous_dispatch(disp_ctx->dispatch_jmp);
747 
748 	return 0;
749 }
750 
sdei_event_context(void * handle,unsigned int param)751 int64_t sdei_event_context(void *handle, unsigned int param)
752 {
753 	sdei_dispatch_context_t *disp_ctx;
754 
755 	if (param >= SDEI_SAVED_GPREGS)
756 		return SDEI_EINVAL;
757 
758 	/* Get outstanding dispatch on this CPU */
759 	disp_ctx = get_outstanding_dispatch();
760 	if (disp_ctx == NULL)
761 		return SDEI_EDENY;
762 
763 	assert(disp_ctx->map != NULL);
764 
765 	if (!can_sdei_state_trans(get_event_entry(disp_ctx->map), DO_CONTEXT))
766 		return SDEI_EDENY;
767 
768 	/*
769 	 * No locking is required for the Running status as this is the only CPU
770 	 * which can complete the event
771 	 */
772 
773 	return (int64_t) disp_ctx->x[param];
774 }
775