1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2014-2015 Freescale Semiconductor, Inc.
4  */
5 
6 #include <common.h>
7 #include <cpu_func.h>
8 #include <image.h>
9 #include <log.h>
10 #include <asm/cache.h>
11 #include <asm/global_data.h>
12 #include <asm/io.h>
13 #include <asm/system.h>
14 #include <asm/arch/mp.h>
15 #include <asm/arch/soc.h>
16 #include <linux/delay.h>
17 #include "cpu.h"
18 #include <asm/arch-fsl-layerscape/soc.h>
19 #include <efi_loader.h>
20 
21 DECLARE_GLOBAL_DATA_PTR;
22 
get_spin_tbl_addr(void)23 void *get_spin_tbl_addr(void)
24 {
25 	/* the spin table is at the beginning */
26 	return secondary_boot_code_start;
27 }
28 
update_os_arch_secondary_cores(uint8_t os_arch)29 void update_os_arch_secondary_cores(uint8_t os_arch)
30 {
31 	u64 *table = get_spin_tbl_addr();
32 	int i;
33 
34 	for (i = 1; i < CONFIG_MAX_CPUS; i++) {
35 		if (os_arch == IH_ARCH_DEFAULT)
36 			table[i * WORDS_PER_SPIN_TABLE_ENTRY +
37 				SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_SAME;
38 		else
39 			table[i * WORDS_PER_SPIN_TABLE_ENTRY +
40 				SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_DIFF;
41 	}
42 }
43 
44 #ifdef CONFIG_FSL_LSCH3
wake_secondary_core_n(int cluster,int core,int cluster_cores)45 static void wake_secondary_core_n(int cluster, int core, int cluster_cores)
46 {
47 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
48 	struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
49 	u32 mpidr = 0;
50 
51 	mpidr = ((cluster << 8) | core);
52 	/*
53 	 * mpidr_el1 register value of core which needs to be released
54 	 * is written to scratchrw[6] register
55 	 */
56 	gur_out32(&gur->scratchrw[6], mpidr);
57 	asm volatile("dsb st" : : : "memory");
58 	rst->brrl |= 1 << ((cluster * cluster_cores) + core);
59 	asm volatile("dsb st" : : : "memory");
60 	/*
61 	 * scratchrw[6] register value is polled
62 	 * when the value becomes zero, this means that this core is up
63 	 * and running, next core can be released now
64 	 */
65 	while (gur_in32(&gur->scratchrw[6]) != 0)
66 		;
67 }
68 #endif
69 
fsl_layerscape_wake_seconday_cores(void)70 int fsl_layerscape_wake_seconday_cores(void)
71 {
72 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
73 #ifdef CONFIG_FSL_LSCH3
74 	struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
75 	u32 svr, ver, cluster, type;
76 	int j = 0, cluster_cores = 0;
77 #elif defined(CONFIG_FSL_LSCH2)
78 	struct ccsr_scfg __iomem *scfg = (void *)(CONFIG_SYS_FSL_SCFG_ADDR);
79 #endif
80 	u32 cores, cpu_up_mask = 1;
81 	int i, timeout = 10;
82 	u64 *table;
83 #ifdef CONFIG_EFI_LOADER
84 	u64 reloc_addr = U32_MAX;
85 	efi_status_t ret;
86 #endif
87 
88 #ifdef COUNTER_FREQUENCY_REAL
89 	/* update for secondary cores */
90 	__real_cntfrq = COUNTER_FREQUENCY_REAL;
91 	flush_dcache_range((unsigned long)&__real_cntfrq,
92 			   (unsigned long)&__real_cntfrq + 8);
93 #endif
94 
95 #ifdef CONFIG_EFI_LOADER
96 	/*
97 	 * EFI will reserve 64kb for its runtime services. This will probably
98 	 * overlap with our spin table code, which is why we have to relocate
99 	 * it.
100 	 * Keep this after the __real_cntfrq update, so we have it when we
101 	 * copy the complete section here.
102 	 */
103 	ret = efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS,
104 				 EFI_RESERVED_MEMORY_TYPE,
105 				 efi_size_in_pages(secondary_boot_code_size),
106 				 &reloc_addr);
107 	if (ret == EFI_SUCCESS) {
108 		debug("Relocating spin table from %llx to %llx (size %lx)\n",
109 		      (u64)secondary_boot_code_start, reloc_addr,
110 		      secondary_boot_code_size);
111 		memcpy((void *)reloc_addr, secondary_boot_code_start,
112 		       secondary_boot_code_size);
113 		flush_dcache_range(reloc_addr,
114 				   reloc_addr + secondary_boot_code_size);
115 
116 		/* set new entry point for secondary cores */
117 		secondary_boot_addr += (void *)reloc_addr -
118 				       secondary_boot_code_start;
119 		flush_dcache_range((unsigned long)&secondary_boot_addr,
120 				   (unsigned long)&secondary_boot_addr + 8);
121 
122 		/* this will be used to reserve the memory */
123 		secondary_boot_code_start = (void *)reloc_addr;
124 	}
125 #endif
126 
127 	cores = cpu_mask();
128 	/* Clear spin table so that secondary processors
129 	 * observe the correct value after waking up from wfe.
130 	 */
131 	table = get_spin_tbl_addr();
132 	memset(table, 0, CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE);
133 	flush_dcache_range((unsigned long)table,
134 			   (unsigned long)table +
135 			   (CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE));
136 
137 	debug("Waking secondary cores to start from %lx\n", gd->relocaddr);
138 
139 #ifdef CONFIG_FSL_LSCH3
140 	gur_out32(&gur->bootlocptrh, (u32)(gd->relocaddr >> 32));
141 	gur_out32(&gur->bootlocptrl, (u32)gd->relocaddr);
142 
143 	svr = gur_in32(&gur->svr);
144 	ver = SVR_SOC_VER(svr);
145 	if (ver == SVR_LS2080A || ver == SVR_LS2085A) {
146 		gur_out32(&gur->scratchrw[6], 1);
147 		asm volatile("dsb st" : : : "memory");
148 		rst->brrl = cores;
149 		asm volatile("dsb st" : : : "memory");
150 	} else {
151 		/*
152 		 * Release the cores out of reset one-at-a-time to avoid
153 		 * power spikes
154 		 */
155 		i = 0;
156 		cluster = in_le32(&gur->tp_cluster[i].lower);
157 		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
158 			type = initiator_type(cluster, j);
159 			if (type &&
160 			    TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
161 				cluster_cores++;
162 		}
163 
164 		do {
165 			cluster = in_le32(&gur->tp_cluster[i].lower);
166 			for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
167 				type = initiator_type(cluster, j);
168 				if (type &&
169 				    TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
170 					wake_secondary_core_n(i, j,
171 							      cluster_cores);
172 			}
173 		i++;
174 		} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
175 	}
176 #elif defined(CONFIG_FSL_LSCH2)
177 	scfg_out32(&scfg->scratchrw[0], (u32)(gd->relocaddr >> 32));
178 	scfg_out32(&scfg->scratchrw[1], (u32)gd->relocaddr);
179 	asm volatile("dsb st" : : : "memory");
180 	gur_out32(&gur->brrl, cores);
181 	asm volatile("dsb st" : : : "memory");
182 
183 	/* Bootup online cores */
184 	scfg_out32(&scfg->corebcr, cores);
185 #endif
186 	/* This is needed as a precautionary measure.
187 	 * If some code before this has accidentally  released the secondary
188 	 * cores then the pre-bootloader code will trap them in a "wfe" unless
189 	 * the scratchrw[6] is set. In this case we need a sev here to get these
190 	 * cores moving again.
191 	 */
192 	asm volatile("sev");
193 
194 	while (timeout--) {
195 		flush_dcache_range((unsigned long)table, (unsigned long)table +
196 				   CONFIG_MAX_CPUS * 64);
197 		for (i = 1; i < CONFIG_MAX_CPUS; i++) {
198 			if (table[i * WORDS_PER_SPIN_TABLE_ENTRY +
199 					SPIN_TABLE_ELEM_STATUS_IDX])
200 				cpu_up_mask |= 1 << i;
201 		}
202 		if (hweight32(cpu_up_mask) == hweight32(cores))
203 			break;
204 		udelay(10);
205 	}
206 	if (timeout <= 0) {
207 		printf("CPU:   Failed to bring up some cores (mask 0x%x)\n",
208 		       cores ^ cpu_up_mask);
209 		return 1;
210 	}
211 	printf("CPU:   %d cores online\n", hweight32(cores));
212 
213 	return 0;
214 }
215 
is_core_valid(unsigned int core)216 int is_core_valid(unsigned int core)
217 {
218 	return !!((1 << core) & cpu_mask());
219 }
220 
is_pos_valid(unsigned int pos)221 static int is_pos_valid(unsigned int pos)
222 {
223 	return !!((1 << pos) & cpu_pos_mask());
224 }
225 
is_core_online(u64 cpu_id)226 int is_core_online(u64 cpu_id)
227 {
228 	u64 *table = get_spin_tbl_addr();
229 	int pos = id_to_core(cpu_id);
230 	table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
231 	return table[SPIN_TABLE_ELEM_STATUS_IDX] == 1;
232 }
233 
cpu_reset(u32 nr)234 int cpu_reset(u32 nr)
235 {
236 	puts("Feature is not implemented.\n");
237 
238 	return 0;
239 }
240 
cpu_disable(u32 nr)241 int cpu_disable(u32 nr)
242 {
243 	puts("Feature is not implemented.\n");
244 
245 	return 0;
246 }
247 
core_to_pos(int nr)248 static int core_to_pos(int nr)
249 {
250 	u32 cores = cpu_pos_mask();
251 	int i, count = 0;
252 
253 	if (nr == 0) {
254 		return 0;
255 	} else if (nr >= hweight32(cores)) {
256 		puts("Not a valid core number.\n");
257 		return -1;
258 	}
259 
260 	for (i = 1; i < 32; i++) {
261 		if (is_pos_valid(i)) {
262 			count++;
263 			if (count == nr)
264 				break;
265 		}
266 	}
267 
268 	if (count != nr)
269 		return -1;
270 
271 	return i;
272 }
273 
cpu_status(u32 nr)274 int cpu_status(u32 nr)
275 {
276 	u64 *table = get_spin_tbl_addr();
277 	int pos;
278 
279 	if (nr == 0) {
280 		printf("table base @ 0x%p\n", table);
281 	} else {
282 		pos = core_to_pos(nr);
283 		if (pos < 0)
284 			return -1;
285 		table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
286 		printf("table @ 0x%p\n", table);
287 		printf("   addr - 0x%016llx\n",
288 		       table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX]);
289 		printf("   status   - 0x%016llx\n",
290 		       table[SPIN_TABLE_ELEM_STATUS_IDX]);
291 		printf("   lpid  - 0x%016llx\n",
292 		       table[SPIN_TABLE_ELEM_LPID_IDX]);
293 	}
294 
295 	return 0;
296 }
297 
cpu_release(u32 nr,int argc,char * const argv[])298 int cpu_release(u32 nr, int argc, char *const argv[])
299 {
300 	u64 boot_addr;
301 	u64 *table = get_spin_tbl_addr();
302 	int pos;
303 
304 	pos = core_to_pos(nr);
305 	if (pos <= 0)
306 		return -1;
307 
308 	table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
309 	boot_addr = simple_strtoull(argv[0], NULL, 16);
310 	table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX] = boot_addr;
311 	flush_dcache_range((unsigned long)table,
312 			   (unsigned long)table + SPIN_TABLE_ELEM_SIZE);
313 	asm volatile("dsb st");
314 
315 	/*
316 	 * The secondary CPUs polling the spin-table above for a non-zero
317 	 * value. To save power "wfe" is called. Thus call "sev" here to
318 	 * wake the CPUs and let them check the spin-table again (see
319 	 * slave_cpu loop in lowlevel.S)
320 	 */
321 	asm volatile("sev");
322 
323 	return 0;
324 }
325