1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2017 NXP
4  *
5  * Peng Fan <peng.fan@nxp.com>
6  */
7 
8 #include <common.h>
9 #include <command.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/imx-regs.h>
12 #include <asm/io.h>
13 #include <asm/arch/sys_proto.h>
14 #include <errno.h>
15 #include <linux/delay.h>
16 #include <linux/iopoll.h>
17 
18 static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
19 
20 static u32 get_root_clk(enum clk_root_index clock_id);
21 
decode_frac_pll(enum clk_root_src frac_pll)22 static u32 decode_frac_pll(enum clk_root_src frac_pll)
23 {
24 	u32 pll_cfg0, pll_cfg1, pllout;
25 	u32 pll_refclk_sel, pll_refclk;
26 	u32 divr_val, divq_val, divf_val, divff, divfi;
27 	u32 pllout_div_shift, pllout_div_mask, pllout_div;
28 
29 	switch (frac_pll) {
30 	case ARM_PLL_CLK:
31 		pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
32 		pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
33 		pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
34 		pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
35 		break;
36 	default:
37 		printf("Frac PLL %d not supporte\n", frac_pll);
38 		return 0;
39 	}
40 
41 	pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
42 	pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
43 
44 	/* Power down */
45 	if (pll_cfg0 & FRAC_PLL_PD_MASK)
46 		return 0;
47 
48 	/* output not enabled */
49 	if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
50 		return 0;
51 
52 	pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
53 
54 	if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
55 		pll_refclk = 25000000u;
56 	else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
57 		pll_refclk = 27000000u;
58 	else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
59 		pll_refclk = 27000000u;
60 	else
61 		pll_refclk = 0;
62 
63 	if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
64 		return pll_refclk;
65 
66 	divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
67 		FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
68 	divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
69 
70 	divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
71 		FRAC_PLL_FRAC_DIV_CTL_SHIFT;
72 	divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
73 
74 	divf_val = 1 + divfi + divff / (1 << 24);
75 
76 	pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
77 		((divq_val + 1) * 2);
78 
79 	return pllout / (pllout_div + 1);
80 }
81 
decode_sscg_pll(enum clk_root_src sscg_pll)82 static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
83 {
84 	u32 pll_cfg0, pll_cfg1, pll_cfg2;
85 	u32 pll_refclk_sel, pll_refclk;
86 	u32 divr1, divr2, divf1, divf2, divq, div;
87 	u32 sse;
88 	u32 pll_clke;
89 	u32 pllout_div_shift, pllout_div_mask, pllout_div;
90 	u32 pllout;
91 
92 	switch (sscg_pll) {
93 	case SYSTEM_PLL1_800M_CLK:
94 	case SYSTEM_PLL1_400M_CLK:
95 	case SYSTEM_PLL1_266M_CLK:
96 	case SYSTEM_PLL1_200M_CLK:
97 	case SYSTEM_PLL1_160M_CLK:
98 	case SYSTEM_PLL1_133M_CLK:
99 	case SYSTEM_PLL1_100M_CLK:
100 	case SYSTEM_PLL1_80M_CLK:
101 	case SYSTEM_PLL1_40M_CLK:
102 		pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
103 		pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
104 		pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
105 		pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
106 		pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
107 		break;
108 	case SYSTEM_PLL2_1000M_CLK:
109 	case SYSTEM_PLL2_500M_CLK:
110 	case SYSTEM_PLL2_333M_CLK:
111 	case SYSTEM_PLL2_250M_CLK:
112 	case SYSTEM_PLL2_200M_CLK:
113 	case SYSTEM_PLL2_166M_CLK:
114 	case SYSTEM_PLL2_125M_CLK:
115 	case SYSTEM_PLL2_100M_CLK:
116 	case SYSTEM_PLL2_50M_CLK:
117 		pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
118 		pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
119 		pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
120 		pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
121 		pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
122 		break;
123 	case SYSTEM_PLL3_CLK:
124 		pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
125 		pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
126 		pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
127 		pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
128 		pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
129 		break;
130 	case DRAM_PLL1_CLK:
131 		pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
132 		pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
133 		pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
134 		pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
135 		pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
136 		break;
137 	default:
138 		printf("sscg pll %d not supporte\n", sscg_pll);
139 		return 0;
140 	}
141 
142 	switch (sscg_pll) {
143 	case DRAM_PLL1_CLK:
144 		pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
145 		div = 1;
146 		break;
147 	case SYSTEM_PLL3_CLK:
148 		pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
149 		div = 1;
150 		break;
151 	case SYSTEM_PLL2_1000M_CLK:
152 	case SYSTEM_PLL1_800M_CLK:
153 		pll_clke = SSCG_PLL_CLKE_MASK;
154 		div = 1;
155 		break;
156 	case SYSTEM_PLL2_500M_CLK:
157 	case SYSTEM_PLL1_400M_CLK:
158 		pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
159 		div = 2;
160 		break;
161 	case SYSTEM_PLL2_333M_CLK:
162 	case SYSTEM_PLL1_266M_CLK:
163 		pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
164 		div = 3;
165 		break;
166 	case SYSTEM_PLL2_250M_CLK:
167 	case SYSTEM_PLL1_200M_CLK:
168 		pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
169 		div = 4;
170 		break;
171 	case SYSTEM_PLL2_200M_CLK:
172 	case SYSTEM_PLL1_160M_CLK:
173 		pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
174 		div = 5;
175 		break;
176 	case SYSTEM_PLL2_166M_CLK:
177 	case SYSTEM_PLL1_133M_CLK:
178 		pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
179 		div = 6;
180 		break;
181 	case SYSTEM_PLL2_125M_CLK:
182 	case SYSTEM_PLL1_100M_CLK:
183 		pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
184 		div = 8;
185 		break;
186 	case SYSTEM_PLL2_100M_CLK:
187 	case SYSTEM_PLL1_80M_CLK:
188 		pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
189 		div = 10;
190 		break;
191 	case SYSTEM_PLL2_50M_CLK:
192 	case SYSTEM_PLL1_40M_CLK:
193 		pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
194 		div = 20;
195 		break;
196 	default:
197 		printf("sscg pll %d not supporte\n", sscg_pll);
198 		return 0;
199 	}
200 
201 	/* Power down */
202 	if (pll_cfg0 & SSCG_PLL_PD_MASK)
203 		return 0;
204 
205 	/* output not enabled */
206 	if ((pll_cfg0 & pll_clke) == 0)
207 		return 0;
208 
209 	pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
210 	pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
211 
212 	pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
213 
214 	if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
215 		pll_refclk = 25000000u;
216 	else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
217 		pll_refclk = 27000000u;
218 	else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
219 		pll_refclk = 27000000u;
220 	else
221 		pll_refclk = 0;
222 
223 	/* We assume bypass1/2 are the same value */
224 	if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
225 	    (pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
226 		return pll_refclk;
227 
228 	divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
229 		SSCG_PLL_REF_DIVR1_SHIFT;
230 	divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
231 		SSCG_PLL_REF_DIVR2_SHIFT;
232 	divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
233 		SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
234 	divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
235 		SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
236 	divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
237 		SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
238 	sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
239 
240 	if (sse)
241 		sse = 8;
242 	else
243 		sse = 2;
244 
245 	pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
246 		(divr2 + 1) * (divf2 + 1) / (divq + 1);
247 
248 	return pllout / (pllout_div + 1) / div;
249 }
250 
get_root_src_clk(enum clk_root_src root_src)251 static u32 get_root_src_clk(enum clk_root_src root_src)
252 {
253 	switch (root_src) {
254 	case OSC_25M_CLK:
255 		return 25000000;
256 	case OSC_27M_CLK:
257 		return 27000000;
258 	case OSC_32K_CLK:
259 		return 32768;
260 	case ARM_PLL_CLK:
261 		return decode_frac_pll(root_src);
262 	case SYSTEM_PLL1_800M_CLK:
263 	case SYSTEM_PLL1_400M_CLK:
264 	case SYSTEM_PLL1_266M_CLK:
265 	case SYSTEM_PLL1_200M_CLK:
266 	case SYSTEM_PLL1_160M_CLK:
267 	case SYSTEM_PLL1_133M_CLK:
268 	case SYSTEM_PLL1_100M_CLK:
269 	case SYSTEM_PLL1_80M_CLK:
270 	case SYSTEM_PLL1_40M_CLK:
271 	case SYSTEM_PLL2_1000M_CLK:
272 	case SYSTEM_PLL2_500M_CLK:
273 	case SYSTEM_PLL2_333M_CLK:
274 	case SYSTEM_PLL2_250M_CLK:
275 	case SYSTEM_PLL2_200M_CLK:
276 	case SYSTEM_PLL2_166M_CLK:
277 	case SYSTEM_PLL2_125M_CLK:
278 	case SYSTEM_PLL2_100M_CLK:
279 	case SYSTEM_PLL2_50M_CLK:
280 	case SYSTEM_PLL3_CLK:
281 		return decode_sscg_pll(root_src);
282 	case ARM_A53_ALT_CLK:
283 		return get_root_clk(ARM_A53_CLK_ROOT);
284 	default:
285 		return 0;
286 	}
287 
288 	return 0;
289 }
290 
get_root_clk(enum clk_root_index clock_id)291 static u32 get_root_clk(enum clk_root_index clock_id)
292 {
293 	enum clk_root_src root_src;
294 	u32 post_podf, pre_podf, root_src_clk;
295 
296 	if (clock_root_enabled(clock_id) <= 0)
297 		return 0;
298 
299 	if (clock_get_prediv(clock_id, &pre_podf) < 0)
300 		return 0;
301 
302 	if (clock_get_postdiv(clock_id, &post_podf) < 0)
303 		return 0;
304 
305 	if (clock_get_src(clock_id, &root_src) < 0)
306 		return 0;
307 
308 	root_src_clk = get_root_src_clk(root_src);
309 
310 	return root_src_clk / (post_podf + 1) / (pre_podf + 1);
311 }
312 
313 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)314 void enable_ocotp_clk(unsigned char enable)
315 {
316 	clock_enable(CCGR_OCOTP, !!enable);
317 }
318 #endif
319 
enable_i2c_clk(unsigned char enable,unsigned int i2c_num)320 int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
321 {
322 	/* 0 - 3 is valid i2c num */
323 	if (i2c_num > 3)
324 		return -EINVAL;
325 
326 	clock_enable(CCGR_I2C1 + i2c_num, !!enable);
327 
328 	return 0;
329 }
330 
get_arm_core_clk(void)331 u32 get_arm_core_clk(void)
332 {
333 	enum clk_root_src root_src;
334 	u32 root_src_clk;
335 
336 	if (clock_get_src(CORE_SEL_CFG, &root_src) < 0)
337 		return 0;
338 
339 	root_src_clk = get_root_src_clk(root_src);
340 
341 	return root_src_clk;
342 }
343 
mxc_get_clock(enum mxc_clock clk)344 unsigned int mxc_get_clock(enum mxc_clock clk)
345 {
346 	u32 val;
347 
348 	switch (clk) {
349 	case MXC_ARM_CLK:
350 		return get_arm_core_clk();
351 	case MXC_IPG_CLK:
352 		clock_get_target_val(IPG_CLK_ROOT, &val);
353 		val = val & 0x3;
354 		return get_root_clk(AHB_CLK_ROOT) / (val + 1);
355 	case MXC_ESDHC_CLK:
356 		return get_root_clk(USDHC1_CLK_ROOT);
357 	case MXC_ESDHC2_CLK:
358 		return get_root_clk(USDHC2_CLK_ROOT);
359 	default:
360 		return get_root_clk(clk);
361 	}
362 }
363 
imx_get_uartclk(void)364 u32 imx_get_uartclk(void)
365 {
366 	return mxc_get_clock(UART1_CLK_ROOT);
367 }
368 
mxs_set_lcdclk(u32 base_addr,u32 freq)369 void mxs_set_lcdclk(u32 base_addr, u32 freq)
370 {
371 	/*
372 	 * LCDIF_PIXEL_CLK: select 800MHz root clock,
373 	 * select pre divider 8, output is 100 MHz
374 	 */
375 	clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
376 			     CLK_ROOT_SOURCE_SEL(4) |
377 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
378 }
379 
init_wdog_clk(void)380 void init_wdog_clk(void)
381 {
382 	clock_enable(CCGR_WDOG1, 0);
383 	clock_enable(CCGR_WDOG2, 0);
384 	clock_enable(CCGR_WDOG3, 0);
385 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
386 			     CLK_ROOT_SOURCE_SEL(0));
387 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
388 			     CLK_ROOT_SOURCE_SEL(0));
389 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
390 			     CLK_ROOT_SOURCE_SEL(0));
391 	clock_enable(CCGR_WDOG1, 1);
392 	clock_enable(CCGR_WDOG2, 1);
393 	clock_enable(CCGR_WDOG3, 1);
394 }
395 
396 
init_nand_clk(void)397 void init_nand_clk(void)
398 {
399 	clock_enable(CCGR_RAWNAND, 0);
400 	clock_set_target_val(NAND_CLK_ROOT,
401 			     CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3) |
402 			     CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4));
403 	clock_enable(CCGR_RAWNAND, 1);
404 }
405 
init_uart_clk(u32 index)406 void init_uart_clk(u32 index)
407 {
408 	/* Set uart clock root 25M OSC */
409 	switch (index) {
410 	case 0:
411 		clock_enable(CCGR_UART1, 0);
412 		clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
413 				     CLK_ROOT_SOURCE_SEL(0));
414 		clock_enable(CCGR_UART1, 1);
415 		return;
416 	case 1:
417 		clock_enable(CCGR_UART2, 0);
418 		clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
419 				     CLK_ROOT_SOURCE_SEL(0));
420 		clock_enable(CCGR_UART2, 1);
421 		return;
422 	case 2:
423 		clock_enable(CCGR_UART3, 0);
424 		clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
425 				     CLK_ROOT_SOURCE_SEL(0));
426 		clock_enable(CCGR_UART3, 1);
427 		return;
428 	case 3:
429 		clock_enable(CCGR_UART4, 0);
430 		clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
431 				     CLK_ROOT_SOURCE_SEL(0));
432 		clock_enable(CCGR_UART4, 1);
433 		return;
434 	default:
435 		printf("Invalid uart index\n");
436 		return;
437 	}
438 }
439 
init_clk_usdhc(u32 index)440 void init_clk_usdhc(u32 index)
441 {
442 	/*
443 	 * set usdhc clock root
444 	 * sys pll1 400M
445 	 */
446 	switch (index) {
447 	case 0:
448 		clock_enable(CCGR_USDHC1, 0);
449 		clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
450 				     CLK_ROOT_SOURCE_SEL(1));
451 		clock_enable(CCGR_USDHC1, 1);
452 		return;
453 	case 1:
454 		clock_enable(CCGR_USDHC2, 0);
455 		clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
456 				     CLK_ROOT_SOURCE_SEL(1));
457 		clock_enable(CCGR_USDHC2, 1);
458 		return;
459 	default:
460 		printf("Invalid usdhc index\n");
461 		return;
462 	}
463 }
464 
set_clk_qspi(void)465 int set_clk_qspi(void)
466 {
467 	/*
468 	 * set qspi root
469 	 * sys pll1 100M
470 	 */
471 	clock_enable(CCGR_QSPI, 0);
472 	clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
473 			     CLK_ROOT_SOURCE_SEL(7));
474 	clock_enable(CCGR_QSPI, 1);
475 
476 	return 0;
477 }
478 
479 #ifdef CONFIG_FEC_MXC
set_clk_enet(enum enet_freq type)480 int set_clk_enet(enum enet_freq type)
481 {
482 	u32 target;
483 	u32 enet1_ref;
484 
485 	switch (type) {
486 	case ENET_125MHZ:
487 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
488 		break;
489 	case ENET_50MHZ:
490 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
491 		break;
492 	case ENET_25MHZ:
493 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
494 		break;
495 	default:
496 		return -EINVAL;
497 	}
498 
499 	/* disable the clock first */
500 	clock_enable(CCGR_ENET1, 0);
501 	clock_enable(CCGR_SIM_ENET, 0);
502 
503 	/* set enet axi clock 266Mhz */
504 	target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
505 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
506 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
507 	clock_set_target_val(ENET_AXI_CLK_ROOT, target);
508 
509 	target = CLK_ROOT_ON | enet1_ref |
510 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
511 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
512 	clock_set_target_val(ENET_REF_CLK_ROOT, target);
513 
514 	target = CLK_ROOT_ON |
515 		ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
516 		CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
517 		CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
518 	clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
519 
520 	/* enable clock */
521 	clock_enable(CCGR_SIM_ENET, 1);
522 	clock_enable(CCGR_ENET1, 1);
523 
524 	return 0;
525 }
526 #endif
527 
imx_get_fecclk(void)528 u32 imx_get_fecclk(void)
529 {
530 	return get_root_clk(ENET_AXI_CLK_ROOT);
531 }
532 
533 static struct dram_bypass_clk_setting imx8mq_dram_bypass_tbl[] = {
534 	DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2,
535 				CLK_ROOT_PRE_DIV2),
536 	DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2,
537 				CLK_ROOT_PRE_DIV2),
538 	DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3,
539 				CLK_ROOT_PRE_DIV2),
540 };
541 
dram_enable_bypass(ulong clk_val)542 void dram_enable_bypass(ulong clk_val)
543 {
544 	int i;
545 	struct dram_bypass_clk_setting *config;
546 
547 	for (i = 0; i < ARRAY_SIZE(imx8mq_dram_bypass_tbl); i++) {
548 		if (clk_val == imx8mq_dram_bypass_tbl[i].clk)
549 			break;
550 	}
551 
552 	if (i == ARRAY_SIZE(imx8mq_dram_bypass_tbl)) {
553 		printf("No matched freq table %lu\n", clk_val);
554 		return;
555 	}
556 
557 	config = &imx8mq_dram_bypass_tbl[i];
558 
559 	clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
560 			     CLK_ROOT_SOURCE_SEL(config->alt_root_sel) |
561 			     CLK_ROOT_PRE_DIV(config->alt_pre_div));
562 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
563 			     CLK_ROOT_SOURCE_SEL(config->apb_root_sel) |
564 			     CLK_ROOT_PRE_DIV(config->apb_pre_div));
565 	clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
566 			     CLK_ROOT_SOURCE_SEL(1));
567 }
568 
dram_disable_bypass(void)569 void dram_disable_bypass(void)
570 {
571 	clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
572 			     CLK_ROOT_SOURCE_SEL(0));
573 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
574 			     CLK_ROOT_SOURCE_SEL(4) |
575 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5));
576 }
577 
578 #ifdef CONFIG_SPL_BUILD
dram_pll_init(ulong pll_val)579 void dram_pll_init(ulong pll_val)
580 {
581 	u32 val;
582 	void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
583 	void __iomem *pll_cfg_reg2 = &ana_pll->dram_pll_cfg2;
584 
585 	/* Bypass */
586 	setbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
587 	setbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
588 
589 	switch (pll_val) {
590 	case MHZ(800):
591 		val = readl(pll_cfg_reg2);
592 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
593 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
594 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
595 			 SSCG_PLL_REF_DIVR2_MASK);
596 		val |= SSCG_PLL_OUTPUT_DIV_VAL(0);
597 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
598 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
599 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
600 		writel(val, pll_cfg_reg2);
601 		break;
602 	case MHZ(600):
603 		val = readl(pll_cfg_reg2);
604 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
605 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
606 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
607 			 SSCG_PLL_REF_DIVR2_MASK);
608 		val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
609 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(17);
610 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
611 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
612 		writel(val, pll_cfg_reg2);
613 		break;
614 	case MHZ(400):
615 		val = readl(pll_cfg_reg2);
616 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
617 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
618 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
619 			 SSCG_PLL_REF_DIVR2_MASK);
620 		val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
621 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
622 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
623 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
624 		writel(val, pll_cfg_reg2);
625 		break;
626 	case MHZ(167):
627 		val = readl(pll_cfg_reg2);
628 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
629 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
630 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
631 			 SSCG_PLL_REF_DIVR2_MASK);
632 		val |= SSCG_PLL_OUTPUT_DIV_VAL(3);
633 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(8);
634 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(45);
635 		val |= SSCG_PLL_REF_DIVR2_VAL(30);
636 		writel(val, pll_cfg_reg2);
637 		break;
638 	default:
639 		break;
640 	}
641 
642 	/* Clear power down bit */
643 	clrbits_le32(pll_control_reg, SSCG_PLL_PD_MASK);
644 	/* Eanble ARM_PLL/SYS_PLL  */
645 	setbits_le32(pll_control_reg, SSCG_PLL_DRAM_PLL_CLKE_MASK);
646 
647 	/* Clear bypass */
648 	clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
649 	__udelay(100);
650 	clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
651 	/* Wait lock */
652 	while (!(readl(pll_control_reg) & SSCG_PLL_LOCK_MASK))
653 		;
654 }
655 
frac_pll_init(u32 pll,enum frac_pll_out_val val)656 static int frac_pll_init(u32 pll, enum frac_pll_out_val val)
657 {
658 	void __iomem *pll_cfg0, __iomem *pll_cfg1;
659 	u32 val_cfg0, val_cfg1, divq;
660 	int ret;
661 
662 	switch (pll) {
663 	case ANATOP_ARM_PLL:
664 		pll_cfg0 = &ana_pll->arm_pll_cfg0;
665 		pll_cfg1 = &ana_pll->arm_pll_cfg1;
666 
667 		if (val == FRAC_PLL_OUT_1000M) {
668 			val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
669 			divq = 0;
670 		} else {
671 			val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
672 			divq = 1;
673 		}
674 		val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
675 			FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
676 			FRAC_PLL_REFCLK_DIV_VAL(4) |
677 			FRAC_PLL_OUTPUT_DIV_VAL(divq);
678 		break;
679 	default:
680 		return -EINVAL;
681 	}
682 
683 	/* bypass the clock */
684 	setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
685 	/* Set the value */
686 	writel(val_cfg1, pll_cfg1);
687 	writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
688 	val_cfg0 = readl(pll_cfg0);
689 	/* unbypass the clock */
690 	clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
691 	ret = readl_poll_timeout(pll_cfg0, val_cfg0,
692 				 val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
693 	if (ret)
694 		printf("%s timeout\n", __func__);
695 	clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
696 
697 	return 0;
698 }
699 
700 
clock_init(void)701 int clock_init(void)
702 {
703 	u32 grade;
704 
705 	clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
706 			     CLK_ROOT_SOURCE_SEL(0));
707 
708 	/*
709 	 * 8MQ only supports two grades: consumer and industrial.
710 	 * We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
711 	 */
712 	grade = get_cpu_temp_grade(NULL, NULL);
713 	if (!grade)
714 		frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
715 	else
716 		frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_800M);
717 
718 	/* Bypass CCM A53 ROOT, Switch to ARM PLL -> MUX-> CPU */
719 	clock_set_target_val(CORE_SEL_CFG, CLK_ROOT_SOURCE_SEL(1));
720 
721 	/*
722 	 * According to ANAMIX SPEC
723 	 * sys pll1 fixed at 800MHz
724 	 * sys pll2 fixed at 1GHz
725 	 * Here we only enable the outputs.
726 	 */
727 	setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
728 		     SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
729 		     SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
730 		     SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
731 		     SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
732 
733 	setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
734 		     SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
735 		     SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
736 		     SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
737 		     SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
738 
739 	clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
740 			     CLK_ROOT_SOURCE_SEL(1));
741 
742 	init_wdog_clk();
743 	clock_enable(CCGR_TSENSOR, 1);
744 	clock_enable(CCGR_OCOTP, 1);
745 
746 	/* config GIC ROOT to sys_pll2_200m */
747 	clock_enable(CCGR_GIC, 0);
748 	clock_set_target_val(GIC_CLK_ROOT,
749 			     CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1));
750 	clock_enable(CCGR_GIC, 1);
751 
752 	return 0;
753 }
754 #endif
755 
756 /*
757  * Dump some clockes.
758  */
759 #ifndef CONFIG_SPL_BUILD
do_imx8m_showclocks(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])760 static int do_imx8m_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
761 			       char *const argv[])
762 {
763 	u32 freq;
764 
765 	freq = decode_frac_pll(ARM_PLL_CLK);
766 	printf("ARM_PLL    %8d MHz\n", freq / 1000000);
767 	freq = decode_sscg_pll(DRAM_PLL1_CLK);
768 	printf("DRAM_PLL    %8d MHz\n", freq / 1000000);
769 	freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
770 	printf("SYS_PLL1_800    %8d MHz\n", freq / 1000000);
771 	freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
772 	printf("SYS_PLL1_400    %8d MHz\n", freq / 1000000);
773 	freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
774 	printf("SYS_PLL1_266    %8d MHz\n", freq / 1000000);
775 	freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
776 	printf("SYS_PLL1_200    %8d MHz\n", freq / 1000000);
777 	freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
778 	printf("SYS_PLL1_160    %8d MHz\n", freq / 1000000);
779 	freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
780 	printf("SYS_PLL1_133    %8d MHz\n", freq / 1000000);
781 	freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
782 	printf("SYS_PLL1_100    %8d MHz\n", freq / 1000000);
783 	freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
784 	printf("SYS_PLL1_80    %8d MHz\n", freq / 1000000);
785 	freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
786 	printf("SYS_PLL1_40    %8d MHz\n", freq / 1000000);
787 	freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
788 	printf("SYS_PLL2_1000    %8d MHz\n", freq / 1000000);
789 	freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
790 	printf("SYS_PLL2_500    %8d MHz\n", freq / 1000000);
791 	freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
792 	printf("SYS_PLL2_333    %8d MHz\n", freq / 1000000);
793 	freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
794 	printf("SYS_PLL2_250    %8d MHz\n", freq / 1000000);
795 	freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
796 	printf("SYS_PLL2_200    %8d MHz\n", freq / 1000000);
797 	freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
798 	printf("SYS_PLL2_166    %8d MHz\n", freq / 1000000);
799 	freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
800 	printf("SYS_PLL2_125    %8d MHz\n", freq / 1000000);
801 	freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
802 	printf("SYS_PLL2_100    %8d MHz\n", freq / 1000000);
803 	freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
804 	printf("SYS_PLL2_50    %8d MHz\n", freq / 1000000);
805 	freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
806 	printf("SYS_PLL3       %8d MHz\n", freq / 1000000);
807 	freq = mxc_get_clock(UART1_CLK_ROOT);
808 	printf("UART1          %8d MHz\n", freq / 1000000);
809 	freq = mxc_get_clock(USDHC1_CLK_ROOT);
810 	printf("USDHC1         %8d MHz\n", freq / 1000000);
811 	freq = mxc_get_clock(QSPI_CLK_ROOT);
812 	printf("QSPI           %8d MHz\n", freq / 1000000);
813 	return 0;
814 }
815 
816 U_BOOT_CMD(
817 	clocks,	CONFIG_SYS_MAXARGS, 1, do_imx8m_showclocks,
818 	"display clocks",
819 	""
820 );
821 #endif
822