1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
4 * Copyright (c) 2000 Silicon Graphics, Inc.
5 */
6 #ifndef _ASM_BITOPS_H
7 #define _ASM_BITOPS_H
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h> /* sigh ... */
11
12 #ifdef __KERNEL__
13
14 #include <asm/sgidefs.h>
15 #include <asm/system.h>
16
17 #include <asm-generic/bitops/fls.h>
18 #include <asm-generic/bitops/__fls.h>
19 #include <asm-generic/bitops/fls64.h>
20 #include <asm-generic/bitops/__ffs.h>
21
22 /*
23 * clear_bit() doesn't provide any barrier for the compiler.
24 */
25 #define smp_mb__before_clear_bit() barrier()
26 #define smp_mb__after_clear_bit() barrier()
27
28 /*
29 * Only disable interrupt for kernel mode stuff to keep usermode stuff
30 * that dares to use kernel include files alive.
31 */
32 #define __bi_flags unsigned long flags
33 #define __bi_cli() __cli()
34 #define __bi_save_flags(x) __save_flags(x)
35 #define __bi_save_and_cli(x) __save_and_cli(x)
36 #define __bi_restore_flags(x) __restore_flags(x)
37 #else
38 #define __bi_flags
39 #define __bi_cli()
40 #define __bi_save_flags(x)
41 #define __bi_save_and_cli(x)
42 #define __bi_restore_flags(x)
43 #endif /* __KERNEL__ */
44
45 #ifdef CONFIG_CPU_HAS_LLSC
46
47 #include <asm/mipsregs.h>
48
49 /*
50 * These functions for MIPS ISA > 1 are interrupt and SMP proof and
51 * interrupt friendly
52 */
53
54 /*
55 * set_bit - Atomically set a bit in memory
56 * @nr: the bit to set
57 * @addr: the address to start counting from
58 *
59 * This function is atomic and may not be reordered. See __set_bit()
60 * if you do not require the atomic guarantees.
61 * Note that @nr may be almost arbitrarily large; this function is not
62 * restricted to acting on a single-word quantity.
63 */
64 static __inline__ void
set_bit(int nr,volatile void * addr)65 set_bit(int nr, volatile void *addr)
66 {
67 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
68 unsigned long temp;
69
70 __asm__ __volatile__(
71 "1:\tll\t%0, %1\t\t# set_bit\n\t"
72 "or\t%0, %2\n\t"
73 "sc\t%0, %1\n\t"
74 "beqz\t%0, 1b"
75 : "=&r" (temp), "=m" (*m)
76 : "ir" (1UL << (nr & 0x1f)), "m" (*m));
77 }
78
79 /*
80 * __set_bit - Set a bit in memory
81 * @nr: the bit to set
82 * @addr: the address to start counting from
83 *
84 * Unlike set_bit(), this function is non-atomic and may be reordered.
85 * If it's called on the same region of memory simultaneously, the effect
86 * may be that only one operation succeeds.
87 */
__set_bit(int nr,volatile void * addr)88 static __inline__ void __set_bit(int nr, volatile void * addr)
89 {
90 unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
91
92 *m |= 1UL << (nr & 31);
93 }
94 #define PLATFORM__SET_BIT
95
96 /*
97 * clear_bit - Clears a bit in memory
98 * @nr: Bit to clear
99 * @addr: Address to start counting from
100 *
101 * clear_bit() is atomic and may not be reordered. However, it does
102 * not contain a memory barrier, so if it is used for locking purposes,
103 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
104 * in order to ensure changes are visible on other processors.
105 */
106 static __inline__ void
clear_bit(int nr,volatile void * addr)107 clear_bit(int nr, volatile void *addr)
108 {
109 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
110 unsigned long temp;
111
112 __asm__ __volatile__(
113 "1:\tll\t%0, %1\t\t# clear_bit\n\t"
114 "and\t%0, %2\n\t"
115 "sc\t%0, %1\n\t"
116 "beqz\t%0, 1b\n\t"
117 : "=&r" (temp), "=m" (*m)
118 : "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
119 }
120
121 /*
122 * change_bit - Toggle a bit in memory
123 * @nr: Bit to clear
124 * @addr: Address to start counting from
125 *
126 * change_bit() is atomic and may not be reordered.
127 * Note that @nr may be almost arbitrarily large; this function is not
128 * restricted to acting on a single-word quantity.
129 */
130 static __inline__ void
change_bit(int nr,volatile void * addr)131 change_bit(int nr, volatile void *addr)
132 {
133 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
134 unsigned long temp;
135
136 __asm__ __volatile__(
137 "1:\tll\t%0, %1\t\t# change_bit\n\t"
138 "xor\t%0, %2\n\t"
139 "sc\t%0, %1\n\t"
140 "beqz\t%0, 1b"
141 : "=&r" (temp), "=m" (*m)
142 : "ir" (1UL << (nr & 0x1f)), "m" (*m));
143 }
144
145 /*
146 * __change_bit - Toggle a bit in memory
147 * @nr: the bit to set
148 * @addr: the address to start counting from
149 *
150 * Unlike change_bit(), this function is non-atomic and may be reordered.
151 * If it's called on the same region of memory simultaneously, the effect
152 * may be that only one operation succeeds.
153 */
__change_bit(int nr,volatile void * addr)154 static __inline__ void __change_bit(int nr, volatile void * addr)
155 {
156 unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
157
158 *m ^= 1UL << (nr & 31);
159 }
160
161 /*
162 * test_and_set_bit - Set a bit and return its old value
163 * @nr: Bit to set
164 * @addr: Address to count from
165 *
166 * This operation is atomic and cannot be reordered.
167 * It also implies a memory barrier.
168 */
169 static __inline__ int
test_and_set_bit(int nr,volatile void * addr)170 test_and_set_bit(int nr, volatile void *addr)
171 {
172 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
173 unsigned long temp, res;
174
175 __asm__ __volatile__(
176 ".set\tnoreorder\t\t# test_and_set_bit\n"
177 "1:\tll\t%0, %1\n\t"
178 "or\t%2, %0, %3\n\t"
179 "sc\t%2, %1\n\t"
180 "beqz\t%2, 1b\n\t"
181 " and\t%2, %0, %3\n\t"
182 ".set\treorder"
183 : "=&r" (temp), "=m" (*m), "=&r" (res)
184 : "r" (1UL << (nr & 0x1f)), "m" (*m)
185 : "memory");
186
187 return res != 0;
188 }
189
190 /*
191 * __test_and_set_bit - Set a bit and return its old value
192 * @nr: Bit to set
193 * @addr: Address to count from
194 *
195 * This operation is non-atomic and can be reordered.
196 * If two examples of this operation race, one can appear to succeed
197 * but actually fail. You must protect multiple accesses with a lock.
198 */
__test_and_set_bit(int nr,volatile void * addr)199 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
200 {
201 int mask, retval;
202 volatile int *a = addr;
203
204 a += nr >> 5;
205 mask = 1 << (nr & 0x1f);
206 retval = (mask & *a) != 0;
207 *a |= mask;
208
209 return retval;
210 }
211
212 /*
213 * test_and_clear_bit - Clear a bit and return its old value
214 * @nr: Bit to set
215 * @addr: Address to count from
216 *
217 * This operation is atomic and cannot be reordered.
218 * It also implies a memory barrier.
219 */
220 static __inline__ int
test_and_clear_bit(int nr,volatile void * addr)221 test_and_clear_bit(int nr, volatile void *addr)
222 {
223 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
224 unsigned long temp, res;
225
226 __asm__ __volatile__(
227 ".set\tnoreorder\t\t# test_and_clear_bit\n"
228 "1:\tll\t%0, %1\n\t"
229 "or\t%2, %0, %3\n\t"
230 "xor\t%2, %3\n\t"
231 "sc\t%2, %1\n\t"
232 "beqz\t%2, 1b\n\t"
233 " and\t%2, %0, %3\n\t"
234 ".set\treorder"
235 : "=&r" (temp), "=m" (*m), "=&r" (res)
236 : "r" (1UL << (nr & 0x1f)), "m" (*m)
237 : "memory");
238
239 return res != 0;
240 }
241
242 /*
243 * __test_and_clear_bit - Clear a bit and return its old value
244 * @nr: Bit to set
245 * @addr: Address to count from
246 *
247 * This operation is non-atomic and can be reordered.
248 * If two examples of this operation race, one can appear to succeed
249 * but actually fail. You must protect multiple accesses with a lock.
250 */
__test_and_clear_bit(int nr,volatile void * addr)251 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
252 {
253 int mask, retval;
254 volatile int *a = addr;
255
256 a += nr >> 5;
257 mask = 1 << (nr & 0x1f);
258 retval = (mask & *a) != 0;
259 *a &= ~mask;
260
261 return retval;
262 }
263
264 /*
265 * test_and_change_bit - Change a bit and return its new value
266 * @nr: Bit to set
267 * @addr: Address to count from
268 *
269 * This operation is atomic and cannot be reordered.
270 * It also implies a memory barrier.
271 */
272 static __inline__ int
test_and_change_bit(int nr,volatile void * addr)273 test_and_change_bit(int nr, volatile void *addr)
274 {
275 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
276 unsigned long temp, res;
277
278 __asm__ __volatile__(
279 ".set\tnoreorder\t\t# test_and_change_bit\n"
280 "1:\tll\t%0, %1\n\t"
281 "xor\t%2, %0, %3\n\t"
282 "sc\t%2, %1\n\t"
283 "beqz\t%2, 1b\n\t"
284 " and\t%2, %0, %3\n\t"
285 ".set\treorder"
286 : "=&r" (temp), "=m" (*m), "=&r" (res)
287 : "r" (1UL << (nr & 0x1f)), "m" (*m)
288 : "memory");
289
290 return res != 0;
291 }
292
293 /*
294 * __test_and_change_bit - Change a bit and return its old value
295 * @nr: Bit to set
296 * @addr: Address to count from
297 *
298 * This operation is non-atomic and can be reordered.
299 * If two examples of this operation race, one can appear to succeed
300 * but actually fail. You must protect multiple accesses with a lock.
301 */
__test_and_change_bit(int nr,volatile void * addr)302 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
303 {
304 int mask, retval;
305 volatile int *a = addr;
306
307 a += nr >> 5;
308 mask = 1 << (nr & 0x1f);
309 retval = (mask & *a) != 0;
310 *a ^= mask;
311
312 return retval;
313 }
314
315 #else /* MIPS I */
316
317 /*
318 * set_bit - Atomically set a bit in memory
319 * @nr: the bit to set
320 * @addr: the address to start counting from
321 *
322 * This function is atomic and may not be reordered. See __set_bit()
323 * if you do not require the atomic guarantees.
324 * Note that @nr may be almost arbitrarily large; this function is not
325 * restricted to acting on a single-word quantity.
326 */
set_bit(int nr,volatile void * addr)327 static __inline__ void set_bit(int nr, volatile void * addr)
328 {
329 int mask;
330 volatile int *a = addr;
331 __bi_flags;
332
333 a += nr >> 5;
334 mask = 1 << (nr & 0x1f);
335 __bi_save_and_cli(flags);
336 *a |= mask;
337 __bi_restore_flags(flags);
338 }
339
340 /*
341 * __set_bit - Set a bit in memory
342 * @nr: the bit to set
343 * @addr: the address to start counting from
344 *
345 * Unlike set_bit(), this function is non-atomic and may be reordered.
346 * If it's called on the same region of memory simultaneously, the effect
347 * may be that only one operation succeeds.
348 */
__set_bit(int nr,volatile void * addr)349 static __inline__ void __set_bit(int nr, volatile void * addr)
350 {
351 int mask;
352 volatile int *a = addr;
353
354 a += nr >> 5;
355 mask = 1 << (nr & 0x1f);
356 *a |= mask;
357 }
358
359 /*
360 * clear_bit - Clears a bit in memory
361 * @nr: Bit to clear
362 * @addr: Address to start counting from
363 *
364 * clear_bit() is atomic and may not be reordered. However, it does
365 * not contain a memory barrier, so if it is used for locking purposes,
366 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
367 * in order to ensure changes are visible on other processors.
368 */
clear_bit(int nr,volatile void * addr)369 static __inline__ void clear_bit(int nr, volatile void * addr)
370 {
371 int mask;
372 volatile int *a = addr;
373 __bi_flags;
374
375 a += nr >> 5;
376 mask = 1 << (nr & 0x1f);
377 __bi_save_and_cli(flags);
378 *a &= ~mask;
379 __bi_restore_flags(flags);
380 }
381
382 /*
383 * change_bit - Toggle a bit in memory
384 * @nr: Bit to clear
385 * @addr: Address to start counting from
386 *
387 * change_bit() is atomic and may not be reordered.
388 * Note that @nr may be almost arbitrarily large; this function is not
389 * restricted to acting on a single-word quantity.
390 */
change_bit(int nr,volatile void * addr)391 static __inline__ void change_bit(int nr, volatile void * addr)
392 {
393 int mask;
394 volatile int *a = addr;
395 __bi_flags;
396
397 a += nr >> 5;
398 mask = 1 << (nr & 0x1f);
399 __bi_save_and_cli(flags);
400 *a ^= mask;
401 __bi_restore_flags(flags);
402 }
403
404 /*
405 * __change_bit - Toggle a bit in memory
406 * @nr: the bit to set
407 * @addr: the address to start counting from
408 *
409 * Unlike change_bit(), this function is non-atomic and may be reordered.
410 * If it's called on the same region of memory simultaneously, the effect
411 * may be that only one operation succeeds.
412 */
__change_bit(int nr,volatile void * addr)413 static __inline__ void __change_bit(int nr, volatile void * addr)
414 {
415 unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
416
417 *m ^= 1UL << (nr & 31);
418 }
419
420 /*
421 * test_and_set_bit - Set a bit and return its old value
422 * @nr: Bit to set
423 * @addr: Address to count from
424 *
425 * This operation is atomic and cannot be reordered.
426 * It also implies a memory barrier.
427 */
test_and_set_bit(int nr,volatile void * addr)428 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
429 {
430 int mask, retval;
431 volatile int *a = addr;
432 __bi_flags;
433
434 a += nr >> 5;
435 mask = 1 << (nr & 0x1f);
436 __bi_save_and_cli(flags);
437 retval = (mask & *a) != 0;
438 *a |= mask;
439 __bi_restore_flags(flags);
440
441 return retval;
442 }
443
444 /*
445 * __test_and_set_bit - Set a bit and return its old value
446 * @nr: Bit to set
447 * @addr: Address to count from
448 *
449 * This operation is non-atomic and can be reordered.
450 * If two examples of this operation race, one can appear to succeed
451 * but actually fail. You must protect multiple accesses with a lock.
452 */
__test_and_set_bit(int nr,volatile void * addr)453 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
454 {
455 int mask, retval;
456 volatile int *a = addr;
457
458 a += nr >> 5;
459 mask = 1 << (nr & 0x1f);
460 retval = (mask & *a) != 0;
461 *a |= mask;
462
463 return retval;
464 }
465
466 /*
467 * test_and_clear_bit - Clear a bit and return its old value
468 * @nr: Bit to set
469 * @addr: Address to count from
470 *
471 * This operation is atomic and cannot be reordered.
472 * It also implies a memory barrier.
473 */
test_and_clear_bit(int nr,volatile void * addr)474 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
475 {
476 int mask, retval;
477 volatile int *a = addr;
478 __bi_flags;
479
480 a += nr >> 5;
481 mask = 1 << (nr & 0x1f);
482 __bi_save_and_cli(flags);
483 retval = (mask & *a) != 0;
484 *a &= ~mask;
485 __bi_restore_flags(flags);
486
487 return retval;
488 }
489
490 /*
491 * __test_and_clear_bit - Clear a bit and return its old value
492 * @nr: Bit to set
493 * @addr: Address to count from
494 *
495 * This operation is non-atomic and can be reordered.
496 * If two examples of this operation race, one can appear to succeed
497 * but actually fail. You must protect multiple accesses with a lock.
498 */
__test_and_clear_bit(int nr,volatile void * addr)499 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
500 {
501 int mask, retval;
502 volatile int *a = addr;
503
504 a += nr >> 5;
505 mask = 1 << (nr & 0x1f);
506 retval = (mask & *a) != 0;
507 *a &= ~mask;
508
509 return retval;
510 }
511
512 /*
513 * test_and_change_bit - Change a bit and return its new value
514 * @nr: Bit to set
515 * @addr: Address to count from
516 *
517 * This operation is atomic and cannot be reordered.
518 * It also implies a memory barrier.
519 */
test_and_change_bit(int nr,volatile void * addr)520 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
521 {
522 int mask, retval;
523 volatile int *a = addr;
524 __bi_flags;
525
526 a += nr >> 5;
527 mask = 1 << (nr & 0x1f);
528 __bi_save_and_cli(flags);
529 retval = (mask & *a) != 0;
530 *a ^= mask;
531 __bi_restore_flags(flags);
532
533 return retval;
534 }
535
536 /*
537 * __test_and_change_bit - Change a bit and return its old value
538 * @nr: Bit to set
539 * @addr: Address to count from
540 *
541 * This operation is non-atomic and can be reordered.
542 * If two examples of this operation race, one can appear to succeed
543 * but actually fail. You must protect multiple accesses with a lock.
544 */
__test_and_change_bit(int nr,volatile void * addr)545 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
546 {
547 int mask, retval;
548 volatile int *a = addr;
549
550 a += nr >> 5;
551 mask = 1 << (nr & 0x1f);
552 retval = (mask & *a) != 0;
553 *a ^= mask;
554
555 return retval;
556 }
557
558 #undef __bi_flags
559 #undef __bi_cli
560 #undef __bi_save_flags
561 #undef __bi_restore_flags
562
563 #endif /* MIPS I */
564
565 /*
566 * test_bit - Determine whether a bit is set
567 * @nr: bit number to test
568 * @addr: Address to start counting from
569 */
test_bit(int nr,const volatile void * addr)570 static __inline__ int test_bit(int nr, const volatile void *addr)
571 {
572 return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
573 }
574
575 #ifndef __MIPSEB__
576
577 /* Little endian versions. */
578
579 /*
580 * find_first_zero_bit - find the first zero bit in a memory region
581 * @addr: The address to start the search at
582 * @size: The maximum size to search
583 *
584 * Returns the bit-number of the first zero bit, not the number of the byte
585 * containing a bit.
586 */
find_first_zero_bit(void * addr,unsigned size)587 static __inline__ int find_first_zero_bit (void *addr, unsigned size)
588 {
589 unsigned long dummy;
590 int res;
591
592 if (!size)
593 return 0;
594
595 __asm__ (".set\tnoreorder\n\t"
596 ".set\tnoat\n"
597 "1:\tsubu\t$1,%6,%0\n\t"
598 "blez\t$1,2f\n\t"
599 "lw\t$1,(%5)\n\t"
600 "addiu\t%5,4\n\t"
601 #if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \
602 (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \
603 (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
604 "beql\t%1,$1,1b\n\t"
605 "addiu\t%0,32\n\t"
606 #else
607 "addiu\t%0,32\n\t"
608 "beq\t%1,$1,1b\n\t"
609 "nop\n\t"
610 "subu\t%0,32\n\t"
611 #endif
612 #ifdef __MIPSEB__
613 #error "Fix this for big endian"
614 #endif /* __MIPSEB__ */
615 "li\t%1,1\n"
616 "1:\tand\t%2,$1,%1\n\t"
617 "beqz\t%2,2f\n\t"
618 "sll\t%1,%1,1\n\t"
619 "bnez\t%1,1b\n\t"
620 "add\t%0,%0,1\n\t"
621 ".set\tat\n\t"
622 ".set\treorder\n"
623 "2:"
624 : "=r" (res), "=r" (dummy), "=r" (addr)
625 : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
626 "2" (addr), "r" (size)
627 : "$1");
628
629 return res;
630 }
631
632 /*
633 * find_next_zero_bit - find the first zero bit in a memory region
634 * @addr: The address to base the search on
635 * @offset: The bitnumber to start searching at
636 * @size: The maximum size to search
637 */
find_next_zero_bit(void * addr,int size,int offset)638 static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
639 {
640 unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
641 int set = 0, bit = offset & 31, res;
642 unsigned long dummy;
643
644 if (bit) {
645 /*
646 * Look for zero in first byte
647 */
648 #ifdef __MIPSEB__
649 #error "Fix this for big endian byte order"
650 #endif
651 __asm__(".set\tnoreorder\n\t"
652 ".set\tnoat\n"
653 "1:\tand\t$1,%4,%1\n\t"
654 "beqz\t$1,1f\n\t"
655 "sll\t%1,%1,1\n\t"
656 "bnez\t%1,1b\n\t"
657 "addiu\t%0,1\n\t"
658 ".set\tat\n\t"
659 ".set\treorder\n"
660 "1:"
661 : "=r" (set), "=r" (dummy)
662 : "0" (0), "1" (1 << bit), "r" (*p)
663 : "$1");
664 if (set < (32 - bit))
665 return set + offset;
666 set = 32 - bit;
667 p++;
668 }
669 /*
670 * No zero yet, search remaining full bytes for a zero
671 */
672 res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
673 return offset + set + res;
674 }
675
676 #endif /* !(__MIPSEB__) */
677
678 /*
679 * ffz - find first zero in word.
680 * @word: The word to search
681 *
682 * Undefined if no zero exists, so code should check against ~0UL first.
683 */
ffz(unsigned long word)684 static __inline__ unsigned long ffz(unsigned long word)
685 {
686 unsigned int __res;
687 unsigned int mask = 1;
688
689 __asm__ (
690 ".set\tnoreorder\n\t"
691 ".set\tnoat\n\t"
692 "move\t%0,$0\n"
693 "1:\tand\t$1,%2,%1\n\t"
694 "beqz\t$1,2f\n\t"
695 "sll\t%1,1\n\t"
696 "bnez\t%1,1b\n\t"
697 "addiu\t%0,1\n\t"
698 ".set\tat\n\t"
699 ".set\treorder\n"
700 "2:\n\t"
701 : "=&r" (__res), "=r" (mask)
702 : "r" (word), "1" (mask)
703 : "$1");
704
705 return __res;
706 }
707
708 #ifdef __KERNEL__
709
710 /*
711 * hweightN - returns the hamming weight of a N-bit word
712 * @x: the word to weigh
713 *
714 * The Hamming Weight of a number is the total number of bits set in it.
715 */
716
717 #define hweight32(x) generic_hweight32(x)
718 #define hweight16(x) generic_hweight16(x)
719 #define hweight8(x) generic_hweight8(x)
720
721 #endif /* __KERNEL__ */
722
723 #ifdef __MIPSEB__
724 /*
725 * find_next_zero_bit - find the first zero bit in a memory region
726 * @addr: The address to base the search on
727 * @offset: The bitnumber to start searching at
728 * @size: The maximum size to search
729 */
find_next_zero_bit(void * addr,int size,int offset)730 static __inline__ int find_next_zero_bit(void *addr, int size, int offset)
731 {
732 unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
733 unsigned long result = offset & ~31UL;
734 unsigned long tmp;
735
736 if (offset >= size)
737 return size;
738 size -= result;
739 offset &= 31UL;
740 if (offset) {
741 tmp = *(p++);
742 tmp |= ~0UL >> (32-offset);
743 if (size < 32)
744 goto found_first;
745 if (~tmp)
746 goto found_middle;
747 size -= 32;
748 result += 32;
749 }
750 while (size & ~31UL) {
751 if (~(tmp = *(p++)))
752 goto found_middle;
753 result += 32;
754 size -= 32;
755 }
756 if (!size)
757 return result;
758 tmp = *p;
759
760 found_first:
761 tmp |= ~0UL << size;
762 found_middle:
763 return result + ffz(tmp);
764 }
765
766 /* Linus sez that gcc can optimize the following correctly, we'll see if this
767 * holds on the Sparc as it does for the ALPHA.
768 */
769
770 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
771 /*
772 * find_first_zero_bit - find the first zero bit in a memory region
773 * @addr: The address to start the search at
774 * @size: The maximum size to search
775 *
776 * Returns the bit-number of the first zero bit, not the number of the byte
777 * containing a bit.
778 */
779 static int find_first_zero_bit (void *addr, unsigned size);
780 #endif
781
782 #define find_first_zero_bit(addr, size) \
783 find_next_zero_bit((addr), (size), 0)
784
785 #endif /* (__MIPSEB__) */
786
787 /* Now for the ext2 filesystem bit operations and helper routines. */
788
789 #ifdef __MIPSEB__
ext2_set_bit(int nr,void * addr)790 static __inline__ int ext2_set_bit(int nr, void * addr)
791 {
792 int mask, retval, flags;
793 unsigned char *ADDR = (unsigned char *) addr;
794
795 ADDR += nr >> 3;
796 mask = 1 << (nr & 0x07);
797 save_and_cli(flags);
798 retval = (mask & *ADDR) != 0;
799 *ADDR |= mask;
800 restore_flags(flags);
801 return retval;
802 }
803
ext2_clear_bit(int nr,void * addr)804 static __inline__ int ext2_clear_bit(int nr, void * addr)
805 {
806 int mask, retval, flags;
807 unsigned char *ADDR = (unsigned char *) addr;
808
809 ADDR += nr >> 3;
810 mask = 1 << (nr & 0x07);
811 save_and_cli(flags);
812 retval = (mask & *ADDR) != 0;
813 *ADDR &= ~mask;
814 restore_flags(flags);
815 return retval;
816 }
817
ext2_test_bit(int nr,const void * addr)818 static __inline__ int ext2_test_bit(int nr, const void * addr)
819 {
820 int mask;
821 const unsigned char *ADDR = (const unsigned char *) addr;
822
823 ADDR += nr >> 3;
824 mask = 1 << (nr & 0x07);
825 return ((mask & *ADDR) != 0);
826 }
827
828 #define ext2_find_first_zero_bit(addr, size) \
829 ext2_find_next_zero_bit((addr), (size), 0)
830
ext2_find_next_zero_bit(void * addr,unsigned long size,unsigned long offset)831 static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
832 {
833 unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
834 unsigned long result = offset & ~31UL;
835 unsigned long tmp;
836
837 if (offset >= size)
838 return size;
839 size -= result;
840 offset &= 31UL;
841 if(offset) {
842 /* We hold the little endian value in tmp, but then the
843 * shift is illegal. So we could keep a big endian value
844 * in tmp, like this:
845 *
846 * tmp = __swab32(*(p++));
847 * tmp |= ~0UL >> (32-offset);
848 *
849 * but this would decrease preformance, so we change the
850 * shift:
851 */
852 tmp = *(p++);
853 tmp |= __swab32(~0UL >> (32-offset));
854 if(size < 32)
855 goto found_first;
856 if(~tmp)
857 goto found_middle;
858 size -= 32;
859 result += 32;
860 }
861 while(size & ~31UL) {
862 if(~(tmp = *(p++)))
863 goto found_middle;
864 result += 32;
865 size -= 32;
866 }
867 if(!size)
868 return result;
869 tmp = *p;
870
871 found_first:
872 /* tmp is little endian, so we would have to swab the shift,
873 * see above. But then we have to swab tmp below for ffz, so
874 * we might as well do this here.
875 */
876 return result + ffz(__swab32(tmp) | (~0UL << size));
877 found_middle:
878 return result + ffz(__swab32(tmp));
879 }
880 #else /* !(__MIPSEB__) */
881
882 /* Native ext2 byte ordering, just collapse using defines. */
883 #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
884 #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
885 #define ext2_test_bit(nr, addr) test_bit((nr), (addr))
886 #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
887 #define ext2_find_next_zero_bit(addr, size, offset) \
888 find_next_zero_bit((addr), (size), (offset))
889
890 #endif /* !(__MIPSEB__) */
891
892 /*
893 * Bitmap functions for the minix filesystem.
894 * FIXME: These assume that Minix uses the native byte/bitorder.
895 * This limits the Minix filesystem's value for data exchange very much.
896 */
897 #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
898 #define minix_set_bit(nr,addr) set_bit(nr,addr)
899 #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
900 #define minix_test_bit(nr,addr) test_bit(nr,addr)
901 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
902
903 #endif /* _ASM_BITOPS_H */
904