1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2017 Intel Corporation
4 */
5
6 #include <common.h>
7 #include <init.h>
8 #include <log.h>
9 #include <asm/e820.h>
10 #include <asm/global_data.h>
11 #include <asm/sfi.h>
12
13 DECLARE_GLOBAL_DATA_PTR;
14
15 /*
16 * SFI tables are part of the first stage bootloader.
17 *
18 * U-Boot finds the System Table by searching 16-byte boundaries between
19 * physical address 0x000E0000 and 0x000FFFFF. U-Boot shall search this region
20 * starting at the low address and shall stop searching when the 1st valid SFI
21 * System Table is found.
22 */
23 #define SFI_BASE_ADDR 0x000E0000
24 #define SFI_LENGTH 0x00020000
25 #define SFI_TABLE_LENGTH 16
26
sfi_table_check(struct sfi_table_header * sbh)27 static int sfi_table_check(struct sfi_table_header *sbh)
28 {
29 char chksum = 0;
30 char *pos = (char *)sbh;
31 u32 i;
32
33 if (sbh->len < SFI_TABLE_LENGTH)
34 return -ENXIO;
35
36 if (sbh->len > SFI_LENGTH)
37 return -ENXIO;
38
39 for (i = 0; i < sbh->len; i++)
40 chksum += *pos++;
41
42 if (chksum)
43 pr_err("sfi: Invalid checksum\n");
44
45 /* Checksum is OK if zero */
46 return chksum ? -EILSEQ : 0;
47 }
48
sfi_table_is_type(struct sfi_table_header * sbh,const char * signature)49 static int sfi_table_is_type(struct sfi_table_header *sbh, const char *signature)
50 {
51 return !strncmp(sbh->sig, signature, SFI_SIGNATURE_SIZE) &&
52 !sfi_table_check(sbh);
53 }
54
sfi_get_table_by_sig(unsigned long addr,const char * signature)55 static struct sfi_table_simple *sfi_get_table_by_sig(unsigned long addr,
56 const char *signature)
57 {
58 struct sfi_table_simple *sb;
59 u32 i;
60
61 for (i = 0; i < SFI_LENGTH; i += SFI_TABLE_LENGTH) {
62 sb = (struct sfi_table_simple *)(addr + i);
63 if (sfi_table_is_type(&sb->header, signature))
64 return sb;
65 }
66
67 return NULL;
68 }
69
sfi_search_mmap(void)70 static struct sfi_table_simple *sfi_search_mmap(void)
71 {
72 struct sfi_table_header *sbh;
73 struct sfi_table_simple *sb;
74 u32 sys_entry_cnt;
75 u32 i;
76
77 /* Find SYST table */
78 sb = sfi_get_table_by_sig(SFI_BASE_ADDR, SFI_SIG_SYST);
79 if (!sb) {
80 pr_err("sfi: failed to locate SYST table\n");
81 return NULL;
82 }
83
84 sys_entry_cnt = (sb->header.len - sizeof(*sbh)) / 8;
85
86 /* Search through each SYST entry for MMAP table */
87 for (i = 0; i < sys_entry_cnt; i++) {
88 sbh = (struct sfi_table_header *)(unsigned long)sb->pentry[i];
89
90 if (sfi_table_is_type(sbh, SFI_SIG_MMAP))
91 return (struct sfi_table_simple *)sbh;
92 }
93
94 pr_err("sfi: failed to locate SFI MMAP table\n");
95 return NULL;
96 }
97
98 #define sfi_for_each_mentry(i, sb, mentry) \
99 for (i = 0, mentry = (struct sfi_mem_entry *)sb->pentry; \
100 i < SFI_GET_NUM_ENTRIES(sb, struct sfi_mem_entry); \
101 i++, mentry++) \
102
sfi_setup_e820(unsigned int max_entries,struct e820_entry * entries)103 static unsigned int sfi_setup_e820(unsigned int max_entries,
104 struct e820_entry *entries)
105 {
106 struct sfi_table_simple *sb;
107 struct sfi_mem_entry *mentry;
108 unsigned long long start, end, size;
109 int type, total = 0;
110 u32 i;
111
112 sb = sfi_search_mmap();
113 if (!sb)
114 return 0;
115
116 sfi_for_each_mentry(i, sb, mentry) {
117 start = mentry->phys_start;
118 size = mentry->pages << 12;
119 end = start + size;
120
121 if (start > end)
122 continue;
123
124 /* translate SFI mmap type to E820 map type */
125 switch (mentry->type) {
126 case SFI_MEM_CONV:
127 type = E820_RAM;
128 break;
129 case SFI_MEM_UNUSABLE:
130 case SFI_RUNTIME_SERVICE_DATA:
131 continue;
132 default:
133 type = E820_RESERVED;
134 }
135
136 if (total == E820MAX)
137 break;
138 entries[total].addr = start;
139 entries[total].size = size;
140 entries[total].type = type;
141
142 total++;
143 }
144
145 return total;
146 }
147
sfi_get_bank_size(void)148 static int sfi_get_bank_size(void)
149 {
150 struct sfi_table_simple *sb;
151 struct sfi_mem_entry *mentry;
152 int bank = 0;
153 u32 i;
154
155 sb = sfi_search_mmap();
156 if (!sb)
157 return 0;
158
159 sfi_for_each_mentry(i, sb, mentry) {
160 if (mentry->type != SFI_MEM_CONV)
161 continue;
162
163 gd->bd->bi_dram[bank].start = mentry->phys_start;
164 gd->bd->bi_dram[bank].size = mentry->pages << 12;
165 bank++;
166 }
167
168 return bank;
169 }
170
sfi_get_ram_size(void)171 static phys_size_t sfi_get_ram_size(void)
172 {
173 struct sfi_table_simple *sb;
174 struct sfi_mem_entry *mentry;
175 phys_size_t ram = 0;
176 u32 i;
177
178 sb = sfi_search_mmap();
179 if (!sb)
180 return 0;
181
182 sfi_for_each_mentry(i, sb, mentry) {
183 if (mentry->type != SFI_MEM_CONV)
184 continue;
185
186 ram += mentry->pages << 12;
187 }
188
189 debug("sfi: RAM size %llu\n", ram);
190 return ram;
191 }
192
install_e820_map(unsigned int max_entries,struct e820_entry * entries)193 unsigned int install_e820_map(unsigned int max_entries,
194 struct e820_entry *entries)
195 {
196 return sfi_setup_e820(max_entries, entries);
197 }
198
199 /*
200 * This function looks for the highest region of memory lower than 2GB which
201 * has enough space for U-Boot where U-Boot is aligned on a page boundary. It
202 * overrides the default implementation found elsewhere which simply picks the
203 * end of RAM, wherever that may be. The location of the stack, the relocation
204 * address, and how far U-Boot is moved by relocation are set in the global
205 * data structure.
206 */
board_get_usable_ram_top(ulong total_size)207 ulong board_get_usable_ram_top(ulong total_size)
208 {
209 struct sfi_table_simple *sb;
210 struct sfi_mem_entry *mentry;
211 ulong dest_addr = 0;
212 u32 i;
213
214 sb = sfi_search_mmap();
215 if (!sb)
216 panic("No available memory found for relocation");
217
218 sfi_for_each_mentry(i, sb, mentry) {
219 unsigned long long start, end;
220
221 if (mentry->type != SFI_MEM_CONV)
222 continue;
223
224 start = mentry->phys_start;
225 end = start + (mentry->pages << 12);
226
227 /* Filter memory over 2GB. */
228 if (end > 0x7fffffffULL)
229 end = 0x80000000ULL;
230 /* Skip this region if it's too small. */
231 if (end - start < total_size)
232 continue;
233
234 /* Use this address if it's the largest so far. */
235 if (end > dest_addr)
236 dest_addr = end;
237 }
238
239 return dest_addr;
240 }
241
dram_init_banksize(void)242 int dram_init_banksize(void)
243 {
244 sfi_get_bank_size();
245 return 0;
246 }
247
dram_init(void)248 int dram_init(void)
249 {
250 gd->ram_size = sfi_get_ram_size();
251 return 0;
252 }
253