1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2008 RuggedCom, Inc.
4 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5 */
6
7 /*
8 * NOTE:
9 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
10 * limits the maximum size of addressable storage to < 2 tebibytes
11 */
12 #include <common.h>
13 #include <blk.h>
14 #include <log.h>
15 #include <part.h>
16 #include <uuid.h>
17 #include <asm/cache.h>
18 #include <asm/global_data.h>
19 #include <asm/unaligned.h>
20 #include <command.h>
21 #include <fdtdec.h>
22 #include <ide.h>
23 #include <malloc.h>
24 #include <memalign.h>
25 #include <part_efi.h>
26 #include <linux/compiler.h>
27 #include <linux/ctype.h>
28 #include <u-boot/crc.h>
29
30 DECLARE_GLOBAL_DATA_PTR;
31
32 /*
33 * GUID for basic data partions.
34 */
35 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID;
36
37 #ifdef CONFIG_HAVE_BLOCK_DEVICE
38 /**
39 * efi_crc32() - EFI version of crc32 function
40 * @buf: buffer to calculate crc32 of
41 * @len - length of buf
42 *
43 * Description: Returns EFI-style CRC32 value for @buf
44 */
efi_crc32(const void * buf,u32 len)45 static inline u32 efi_crc32(const void *buf, u32 len)
46 {
47 return crc32(0, buf, len);
48 }
49
50 /*
51 * Private function prototypes
52 */
53
54 static int pmbr_part_valid(struct partition *part);
55 static int is_pmbr_valid(legacy_mbr * mbr);
56 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
57 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
58 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
59 gpt_header *pgpt_head);
60 static int is_pte_valid(gpt_entry * pte);
61 static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head,
62 gpt_entry **pgpt_pte);
63
print_efiname(gpt_entry * pte)64 static char *print_efiname(gpt_entry *pte)
65 {
66 static char name[PARTNAME_SZ + 1];
67 int i;
68 for (i = 0; i < PARTNAME_SZ; i++) {
69 u8 c;
70 c = pte->partition_name[i] & 0xff;
71 c = (c && !isprint(c)) ? '.' : c;
72 name[i] = c;
73 }
74 name[PARTNAME_SZ] = 0;
75 return name;
76 }
77
78 static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
79
get_bootable(gpt_entry * p)80 static int get_bootable(gpt_entry *p)
81 {
82 int ret = 0;
83
84 if (!memcmp(&p->partition_type_guid, &system_guid, sizeof(efi_guid_t)))
85 ret |= PART_EFI_SYSTEM_PARTITION;
86 if (p->attributes.fields.legacy_bios_bootable)
87 ret |= PART_BOOTABLE;
88 return ret;
89 }
90
validate_gpt_header(gpt_header * gpt_h,lbaint_t lba,lbaint_t lastlba)91 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
92 lbaint_t lastlba)
93 {
94 uint32_t crc32_backup = 0;
95 uint32_t calc_crc32;
96
97 /* Check the GPT header signature */
98 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) {
99 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
100 "GUID Partition Table Header",
101 le64_to_cpu(gpt_h->signature),
102 GPT_HEADER_SIGNATURE_UBOOT);
103 return -1;
104 }
105
106 /* Check the GUID Partition Table CRC */
107 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
108 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
109
110 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
111 le32_to_cpu(gpt_h->header_size));
112
113 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
114
115 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
116 printf("%s CRC is wrong: 0x%x != 0x%x\n",
117 "GUID Partition Table Header",
118 le32_to_cpu(crc32_backup), calc_crc32);
119 return -1;
120 }
121
122 /*
123 * Check that the my_lba entry points to the LBA that contains the GPT
124 */
125 if (le64_to_cpu(gpt_h->my_lba) != lba) {
126 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
127 le64_to_cpu(gpt_h->my_lba),
128 lba);
129 return -1;
130 }
131
132 /*
133 * Check that the first_usable_lba and that the last_usable_lba are
134 * within the disk.
135 */
136 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
137 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
138 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
139 return -1;
140 }
141 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
142 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
143 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
144 return -1;
145 }
146
147 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
148 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
149 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
150
151 return 0;
152 }
153
validate_gpt_entries(gpt_header * gpt_h,gpt_entry * gpt_e)154 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
155 {
156 uint32_t calc_crc32;
157
158 /* Check the GUID Partition Table Entry Array CRC */
159 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
160 le32_to_cpu(gpt_h->num_partition_entries) *
161 le32_to_cpu(gpt_h->sizeof_partition_entry));
162
163 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
164 printf("%s: 0x%x != 0x%x\n",
165 "GUID Partition Table Entry Array CRC is wrong",
166 le32_to_cpu(gpt_h->partition_entry_array_crc32),
167 calc_crc32);
168 return -1;
169 }
170
171 return 0;
172 }
173
prepare_backup_gpt_header(gpt_header * gpt_h)174 static void prepare_backup_gpt_header(gpt_header *gpt_h)
175 {
176 uint32_t calc_crc32;
177 uint64_t val;
178
179 /* recalculate the values for the Backup GPT Header */
180 val = le64_to_cpu(gpt_h->my_lba);
181 gpt_h->my_lba = gpt_h->alternate_lba;
182 gpt_h->alternate_lba = cpu_to_le64(val);
183 gpt_h->partition_entry_lba =
184 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
185 gpt_h->header_crc32 = 0;
186
187 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
188 le32_to_cpu(gpt_h->header_size));
189 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
190 }
191
192 #if CONFIG_IS_ENABLED(EFI_PARTITION)
193 /*
194 * Public Functions (include/part.h)
195 */
196
197 /*
198 * UUID is displayed as 32 hexadecimal digits, in 5 groups,
199 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
200 */
get_disk_guid(struct blk_desc * dev_desc,char * guid)201 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
202 {
203 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
204 gpt_entry *gpt_pte = NULL;
205 unsigned char *guid_bin;
206
207 /* This function validates AND fills in the GPT header and PTE */
208 if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
209 return -EINVAL;
210
211 guid_bin = gpt_head->disk_guid.b;
212 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
213
214 /* Remember to free pte */
215 free(gpt_pte);
216 return 0;
217 }
218
part_print_efi(struct blk_desc * dev_desc)219 void part_print_efi(struct blk_desc *dev_desc)
220 {
221 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
222 gpt_entry *gpt_pte = NULL;
223 int i = 0;
224 char uuid[UUID_STR_LEN + 1];
225 unsigned char *uuid_bin;
226
227 /* This function validates AND fills in the GPT header and PTE */
228 if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
229 return;
230
231 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
232
233 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
234 printf("\tAttributes\n");
235 printf("\tType GUID\n");
236 printf("\tPartition GUID\n");
237
238 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
239 /* Stop at the first non valid PTE */
240 if (!is_pte_valid(&gpt_pte[i]))
241 break;
242
243 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
244 le64_to_cpu(gpt_pte[i].starting_lba),
245 le64_to_cpu(gpt_pte[i].ending_lba),
246 print_efiname(&gpt_pte[i]));
247 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
248 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
249 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
250 printf("\ttype:\t%s\n", uuid);
251 if (CONFIG_IS_ENABLED(PARTITION_TYPE_GUID)) {
252 const char *type = uuid_guid_get_str(uuid_bin);
253 if (type)
254 printf("\ttype:\t%s\n", type);
255 }
256 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
257 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
258 printf("\tguid:\t%s\n", uuid);
259 }
260
261 /* Remember to free pte */
262 free(gpt_pte);
263 return;
264 }
265
part_get_info_efi(struct blk_desc * dev_desc,int part,struct disk_partition * info)266 int part_get_info_efi(struct blk_desc *dev_desc, int part,
267 struct disk_partition *info)
268 {
269 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
270 gpt_entry *gpt_pte = NULL;
271
272 /* "part" argument must be at least 1 */
273 if (part < 1) {
274 printf("%s: Invalid Argument(s)\n", __func__);
275 return -1;
276 }
277
278 /* This function validates AND fills in the GPT header and PTE */
279 if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
280 return -1;
281
282 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
283 !is_pte_valid(&gpt_pte[part - 1])) {
284 debug("%s: *** ERROR: Invalid partition number %d ***\n",
285 __func__, part);
286 free(gpt_pte);
287 return -1;
288 }
289
290 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
291 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
292 /* The ending LBA is inclusive, to calculate size, add 1 to it */
293 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
294 - info->start;
295 info->blksz = dev_desc->blksz;
296
297 snprintf((char *)info->name, sizeof(info->name), "%s",
298 print_efiname(&gpt_pte[part - 1]));
299 strcpy((char *)info->type, "U-Boot");
300 info->bootable = get_bootable(&gpt_pte[part - 1]);
301 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
302 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
303 UUID_STR_FORMAT_GUID);
304 #endif
305 #ifdef CONFIG_PARTITION_TYPE_GUID
306 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
307 info->type_guid, UUID_STR_FORMAT_GUID);
308 #endif
309
310 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
311 info->start, info->size, info->name);
312
313 /* Remember to free pte */
314 free(gpt_pte);
315 return 0;
316 }
317
part_test_efi(struct blk_desc * dev_desc)318 static int part_test_efi(struct blk_desc *dev_desc)
319 {
320 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
321
322 /* Read legacy MBR from block 0 and validate it */
323 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
324 || (is_pmbr_valid(legacymbr) != 1)) {
325 return -1;
326 }
327 return 0;
328 }
329
330 /**
331 * set_protective_mbr(): Set the EFI protective MBR
332 * @param dev_desc - block device descriptor
333 *
334 * @return - zero on success, otherwise error
335 */
set_protective_mbr(struct blk_desc * dev_desc)336 static int set_protective_mbr(struct blk_desc *dev_desc)
337 {
338 /* Setup the Protective MBR */
339 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz);
340 if (p_mbr == NULL) {
341 printf("%s: calloc failed!\n", __func__);
342 return -1;
343 }
344
345 /* Read MBR to backup boot code if it exists */
346 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
347 pr_err("** Can't read from device %d **\n", dev_desc->devnum);
348 return -1;
349 }
350
351 /* Clear all data in MBR except of backed up boot code */
352 memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) -
353 MSDOS_MBR_BOOT_CODE_SIZE);
354
355 /* Append signature */
356 p_mbr->signature = MSDOS_MBR_SIGNATURE;
357 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
358 p_mbr->partition_record[0].start_sect = 1;
359 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
360
361 /* Write MBR sector to the MMC device */
362 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
363 printf("** Can't write to device %d **\n",
364 dev_desc->devnum);
365 return -1;
366 }
367
368 return 0;
369 }
370
write_gpt_table(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e)371 int write_gpt_table(struct blk_desc *dev_desc,
372 gpt_header *gpt_h, gpt_entry *gpt_e)
373 {
374 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
375 * sizeof(gpt_entry)), dev_desc);
376 u32 calc_crc32;
377
378 debug("max lba: %x\n", (u32) dev_desc->lba);
379 /* Setup the Protective MBR */
380 if (set_protective_mbr(dev_desc) < 0)
381 goto err;
382
383 /* Generate CRC for the Primary GPT Header */
384 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
385 le32_to_cpu(gpt_h->num_partition_entries) *
386 le32_to_cpu(gpt_h->sizeof_partition_entry));
387 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
388
389 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
390 le32_to_cpu(gpt_h->header_size));
391 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
392
393 /* Write the First GPT to the block right after the Legacy MBR */
394 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
395 goto err;
396
397 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
398 pte_blk_cnt, gpt_e) != pte_blk_cnt)
399 goto err;
400
401 prepare_backup_gpt_header(gpt_h);
402
403 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
404 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
405 goto err;
406
407 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
408 gpt_h) != 1)
409 goto err;
410
411 debug("GPT successfully written to block device!\n");
412 return 0;
413
414 err:
415 printf("** Can't write to device %d **\n", dev_desc->devnum);
416 return -1;
417 }
418
gpt_fill_pte(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e,struct disk_partition * partitions,int parts)419 int gpt_fill_pte(struct blk_desc *dev_desc,
420 gpt_header *gpt_h, gpt_entry *gpt_e,
421 struct disk_partition *partitions, int parts)
422 {
423 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
424 lbaint_t last_usable_lba = (lbaint_t)
425 le64_to_cpu(gpt_h->last_usable_lba);
426 int i, k;
427 size_t efiname_len, dosname_len;
428 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
429 char *str_uuid;
430 unsigned char *bin_uuid;
431 #endif
432 #ifdef CONFIG_PARTITION_TYPE_GUID
433 char *str_type_guid;
434 unsigned char *bin_type_guid;
435 #endif
436 size_t hdr_start = gpt_h->my_lba;
437 size_t hdr_end = hdr_start + 1;
438
439 size_t pte_start = gpt_h->partition_entry_lba;
440 size_t pte_end = pte_start +
441 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
442 dev_desc->blksz;
443
444 for (i = 0; i < parts; i++) {
445 /* partition starting lba */
446 lbaint_t start = partitions[i].start;
447 lbaint_t size = partitions[i].size;
448
449 if (start) {
450 offset = start + size;
451 } else {
452 start = offset;
453 offset += size;
454 }
455
456 /*
457 * If our partition overlaps with either the GPT
458 * header, or the partition entry, reject it.
459 */
460 if (((start < hdr_end && hdr_start < (start + size)) ||
461 (start < pte_end && pte_start < (start + size)))) {
462 printf("Partition overlap\n");
463 return -1;
464 }
465
466 gpt_e[i].starting_lba = cpu_to_le64(start);
467
468 if (offset > (last_usable_lba + 1)) {
469 printf("Partitions layout exceds disk size\n");
470 return -1;
471 }
472 /* partition ending lba */
473 if ((i == parts - 1) && (size == 0))
474 /* extend the last partition to maximuim */
475 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
476 else
477 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
478
479 #ifdef CONFIG_PARTITION_TYPE_GUID
480 str_type_guid = partitions[i].type_guid;
481 bin_type_guid = gpt_e[i].partition_type_guid.b;
482 if (strlen(str_type_guid)) {
483 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
484 UUID_STR_FORMAT_GUID)) {
485 printf("Partition no. %d: invalid type guid: %s\n",
486 i, str_type_guid);
487 return -1;
488 }
489 } else {
490 /* default partition type GUID */
491 memcpy(bin_type_guid,
492 &partition_basic_data_guid, 16);
493 }
494 #else
495 /* partition type GUID */
496 memcpy(gpt_e[i].partition_type_guid.b,
497 &partition_basic_data_guid, 16);
498 #endif
499
500 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
501 str_uuid = partitions[i].uuid;
502 bin_uuid = gpt_e[i].unique_partition_guid.b;
503
504 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
505 printf("Partition no. %d: invalid guid: %s\n",
506 i, str_uuid);
507 return -1;
508 }
509 #endif
510
511 /* partition attributes */
512 memset(&gpt_e[i].attributes, 0,
513 sizeof(gpt_entry_attributes));
514
515 if (partitions[i].bootable & PART_BOOTABLE)
516 gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
517
518 /* partition name */
519 efiname_len = sizeof(gpt_e[i].partition_name)
520 / sizeof(efi_char16_t);
521 dosname_len = sizeof(partitions[i].name);
522
523 memset(gpt_e[i].partition_name, 0,
524 sizeof(gpt_e[i].partition_name));
525
526 for (k = 0; k < min(dosname_len, efiname_len); k++)
527 gpt_e[i].partition_name[k] =
528 (efi_char16_t)(partitions[i].name[k]);
529
530 debug("%s: name: %s offset[%d]: 0x" LBAF
531 " size[%d]: 0x" LBAF "\n",
532 __func__, partitions[i].name, i,
533 offset, i, size);
534 }
535
536 return 0;
537 }
538
partition_entries_offset(struct blk_desc * dev_desc)539 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
540 {
541 uint32_t offset_blks = 2;
542 uint32_t __maybe_unused offset_bytes;
543 int __maybe_unused config_offset;
544
545 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
546 /*
547 * Some architectures require their SPL loader at a fixed
548 * address within the first 16KB of the disk. To avoid an
549 * overlap with the partition entries of the EFI partition
550 * table, the first safe offset (in bytes, from the start of
551 * the disk) for the entries can be set in
552 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
553 */
554 offset_bytes =
555 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
556 offset_blks = offset_bytes / dev_desc->blksz;
557 #endif
558
559 #if defined(CONFIG_OF_CONTROL)
560 /*
561 * Allow the offset of the first partition entires (in bytes
562 * from the start of the device) to be specified as a property
563 * of the device tree '/config' node.
564 */
565 config_offset = fdtdec_get_config_int(gd->fdt_blob,
566 "u-boot,efi-partition-entries-offset",
567 -EINVAL);
568 if (config_offset != -EINVAL) {
569 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
570 offset_blks = offset_bytes / dev_desc->blksz;
571 }
572 #endif
573
574 debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
575
576 /*
577 * The earliest LBA this can be at is LBA#2 (i.e. right behind
578 * the (protective) MBR and the GPT header.
579 */
580 if (offset_blks < 2)
581 offset_blks = 2;
582
583 return offset_blks;
584 }
585
gpt_fill_header(struct blk_desc * dev_desc,gpt_header * gpt_h,char * str_guid,int parts_count)586 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
587 char *str_guid, int parts_count)
588 {
589 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT);
590 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
591 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
592 gpt_h->my_lba = cpu_to_le64(1);
593 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
594 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
595 gpt_h->partition_entry_lba =
596 cpu_to_le64(partition_entries_offset(dev_desc));
597 gpt_h->first_usable_lba =
598 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
599 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
600 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
601 gpt_h->header_crc32 = 0;
602 gpt_h->partition_entry_array_crc32 = 0;
603
604 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
605 return -1;
606
607 return 0;
608 }
609
gpt_restore(struct blk_desc * dev_desc,char * str_disk_guid,struct disk_partition * partitions,int parts_count)610 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
611 struct disk_partition *partitions, int parts_count)
612 {
613 gpt_header *gpt_h;
614 gpt_entry *gpt_e;
615 int ret, size;
616
617 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc);
618 gpt_h = malloc_cache_aligned(size);
619 if (gpt_h == NULL) {
620 printf("%s: calloc failed!\n", __func__);
621 return -1;
622 }
623 memset(gpt_h, 0, size);
624
625 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
626 dev_desc);
627 gpt_e = malloc_cache_aligned(size);
628 if (gpt_e == NULL) {
629 printf("%s: calloc failed!\n", __func__);
630 free(gpt_h);
631 return -1;
632 }
633 memset(gpt_e, 0, size);
634
635 /* Generate Primary GPT header (LBA1) */
636 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
637 if (ret)
638 goto err;
639
640 /* Generate partition entries */
641 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count);
642 if (ret)
643 goto err;
644
645 /* Write GPT partition table */
646 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
647
648 err:
649 free(gpt_e);
650 free(gpt_h);
651 return ret;
652 }
653
654 /**
655 * gpt_convert_efi_name_to_char() - convert u16 string to char string
656 *
657 * TODO: this conversion only supports ANSI characters
658 *
659 * @s: target buffer
660 * @es: u16 string to be converted
661 * @n: size of target buffer
662 */
gpt_convert_efi_name_to_char(char * s,void * es,int n)663 static void gpt_convert_efi_name_to_char(char *s, void *es, int n)
664 {
665 char *ess = es;
666 int i, j;
667
668 memset(s, '\0', n);
669
670 for (i = 0, j = 0; j < n; i += 2, j++) {
671 s[j] = ess[i];
672 if (!ess[i])
673 return;
674 }
675 }
676
gpt_verify_headers(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** gpt_pte)677 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
678 gpt_entry **gpt_pte)
679 {
680 /*
681 * This function validates AND
682 * fills in the GPT header and PTE
683 */
684 if (is_gpt_valid(dev_desc,
685 GPT_PRIMARY_PARTITION_TABLE_LBA,
686 gpt_head, gpt_pte) != 1) {
687 printf("%s: *** ERROR: Invalid GPT ***\n",
688 __func__);
689 return -1;
690 }
691
692 /* Free pte before allocating again */
693 free(*gpt_pte);
694
695 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
696 gpt_head, gpt_pte) != 1) {
697 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
698 __func__);
699 return -1;
700 }
701
702 return 0;
703 }
704
gpt_verify_partitions(struct blk_desc * dev_desc,struct disk_partition * partitions,int parts,gpt_header * gpt_head,gpt_entry ** gpt_pte)705 int gpt_verify_partitions(struct blk_desc *dev_desc,
706 struct disk_partition *partitions, int parts,
707 gpt_header *gpt_head, gpt_entry **gpt_pte)
708 {
709 char efi_str[PARTNAME_SZ + 1];
710 u64 gpt_part_size;
711 gpt_entry *gpt_e;
712 int ret, i;
713
714 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
715 if (ret)
716 return ret;
717
718 gpt_e = *gpt_pte;
719
720 for (i = 0; i < parts; i++) {
721 if (i == gpt_head->num_partition_entries) {
722 pr_err("More partitions than allowed!\n");
723 return -1;
724 }
725
726 /* Check if GPT and ENV partition names match */
727 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
728 PARTNAME_SZ + 1);
729
730 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
731 __func__, i, efi_str, partitions[i].name);
732
733 if (strncmp(efi_str, (char *)partitions[i].name,
734 sizeof(partitions->name))) {
735 pr_err("Partition name: %s does not match %s!\n",
736 efi_str, (char *)partitions[i].name);
737 return -1;
738 }
739
740 /* Check if GPT and ENV sizes match */
741 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
742 le64_to_cpu(gpt_e[i].starting_lba) + 1;
743 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
744 (unsigned long long)gpt_part_size,
745 (unsigned long long)partitions[i].size);
746
747 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
748 /* We do not check the extend partition size */
749 if ((i == parts - 1) && (partitions[i].size == 0))
750 continue;
751
752 pr_err("Partition %s size: %llu does not match %llu!\n",
753 efi_str, (unsigned long long)gpt_part_size,
754 (unsigned long long)partitions[i].size);
755 return -1;
756 }
757
758 /*
759 * Start address is optional - check only if provided
760 * in '$partition' variable
761 */
762 if (!partitions[i].start) {
763 debug("\n");
764 continue;
765 }
766
767 /* Check if GPT and ENV start LBAs match */
768 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
769 le64_to_cpu(gpt_e[i].starting_lba),
770 (unsigned long long)partitions[i].start);
771
772 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
773 pr_err("Partition %s start: %llu does not match %llu!\n",
774 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
775 (unsigned long long)partitions[i].start);
776 return -1;
777 }
778 }
779
780 return 0;
781 }
782
is_valid_gpt_buf(struct blk_desc * dev_desc,void * buf)783 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
784 {
785 gpt_header *gpt_h;
786 gpt_entry *gpt_e;
787
788 /* determine start of GPT Header in the buffer */
789 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
790 dev_desc->blksz);
791 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
792 dev_desc->lba))
793 return -1;
794
795 /* determine start of GPT Entries in the buffer */
796 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
797 dev_desc->blksz);
798 if (validate_gpt_entries(gpt_h, gpt_e))
799 return -1;
800
801 return 0;
802 }
803
write_mbr_and_gpt_partitions(struct blk_desc * dev_desc,void * buf)804 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
805 {
806 gpt_header *gpt_h;
807 gpt_entry *gpt_e;
808 int gpt_e_blk_cnt;
809 lbaint_t lba;
810 int cnt;
811
812 if (is_valid_gpt_buf(dev_desc, buf))
813 return -1;
814
815 /* determine start of GPT Header in the buffer */
816 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
817 dev_desc->blksz);
818
819 /* determine start of GPT Entries in the buffer */
820 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
821 dev_desc->blksz);
822 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
823 le32_to_cpu(gpt_h->sizeof_partition_entry)),
824 dev_desc);
825
826 /* write MBR */
827 lba = 0; /* MBR is always at 0 */
828 cnt = 1; /* MBR (1 block) */
829 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
830 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
831 __func__, "MBR", cnt, lba);
832 return 1;
833 }
834
835 /* write Primary GPT */
836 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
837 cnt = 1; /* GPT Header (1 block) */
838 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
839 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
840 __func__, "Primary GPT Header", cnt, lba);
841 return 1;
842 }
843
844 lba = le64_to_cpu(gpt_h->partition_entry_lba);
845 cnt = gpt_e_blk_cnt;
846 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
847 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
848 __func__, "Primary GPT Entries", cnt, lba);
849 return 1;
850 }
851
852 prepare_backup_gpt_header(gpt_h);
853
854 /* write Backup GPT */
855 lba = le64_to_cpu(gpt_h->partition_entry_lba);
856 cnt = gpt_e_blk_cnt;
857 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
858 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
859 __func__, "Backup GPT Entries", cnt, lba);
860 return 1;
861 }
862
863 lba = le64_to_cpu(gpt_h->my_lba);
864 cnt = 1; /* GPT Header (1 block) */
865 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
866 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
867 __func__, "Backup GPT Header", cnt, lba);
868 return 1;
869 }
870
871 /* Update the partition table entries*/
872 part_init(dev_desc);
873
874 return 0;
875 }
876 #endif
877
878 /*
879 * Private functions
880 */
881 /*
882 * pmbr_part_valid(): Check for EFI partition signature
883 *
884 * Returns: 1 if EFI GPT partition type is found.
885 */
pmbr_part_valid(struct partition * part)886 static int pmbr_part_valid(struct partition *part)
887 {
888 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
889 get_unaligned_le32(&part->start_sect) == 1UL) {
890 return 1;
891 }
892
893 return 0;
894 }
895
896 /*
897 * is_pmbr_valid(): test Protective MBR for validity
898 *
899 * Returns: 1 if PMBR is valid, 0 otherwise.
900 * Validity depends on two things:
901 * 1) MSDOS signature is in the last two bytes of the MBR
902 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
903 */
is_pmbr_valid(legacy_mbr * mbr)904 static int is_pmbr_valid(legacy_mbr * mbr)
905 {
906 int i = 0;
907
908 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
909 return 0;
910
911 for (i = 0; i < 4; i++) {
912 if (pmbr_part_valid(&mbr->partition_record[i])) {
913 return 1;
914 }
915 }
916 return 0;
917 }
918
919 /**
920 * is_gpt_valid() - tests one GPT header and PTEs for validity
921 *
922 * lba is the logical block address of the GPT header to test
923 * gpt is a GPT header ptr, filled on return.
924 * ptes is a PTEs ptr, filled on return.
925 *
926 * Description: returns 1 if valid, 0 on error, 2 if ignored header
927 * If valid, returns pointers to PTEs.
928 */
is_gpt_valid(struct blk_desc * dev_desc,u64 lba,gpt_header * pgpt_head,gpt_entry ** pgpt_pte)929 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
930 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
931 {
932 /* Confirm valid arguments prior to allocation. */
933 if (!dev_desc || !pgpt_head) {
934 printf("%s: Invalid Argument(s)\n", __func__);
935 return 0;
936 }
937
938 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz);
939
940 /* Read MBR Header from device */
941 if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) {
942 printf("*** ERROR: Can't read MBR header ***\n");
943 return 0;
944 }
945
946 /* Read GPT Header from device */
947 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
948 printf("*** ERROR: Can't read GPT header ***\n");
949 return 0;
950 }
951
952 /* Invalid but nothing to yell about. */
953 if (le64_to_cpu(pgpt_head->signature) == GPT_HEADER_CHROMEOS_IGNORE) {
954 debug("ChromeOS 'IGNOREME' GPT header found and ignored\n");
955 return 2;
956 }
957
958 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
959 return 0;
960
961 if (dev_desc->sig_type == SIG_TYPE_NONE) {
962 efi_guid_t empty = {};
963 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
964 dev_desc->sig_type = SIG_TYPE_GUID;
965 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid,
966 sizeof(empty));
967 } else if (mbr->unique_mbr_signature != 0) {
968 dev_desc->sig_type = SIG_TYPE_MBR;
969 dev_desc->mbr_sig = mbr->unique_mbr_signature;
970 }
971 }
972
973 /* Read and allocate Partition Table Entries */
974 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
975 if (*pgpt_pte == NULL) {
976 printf("GPT: Failed to allocate memory for PTE\n");
977 return 0;
978 }
979
980 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
981 free(*pgpt_pte);
982 return 0;
983 }
984
985 /* We're done, all's well */
986 return 1;
987 }
988
989 /**
990 * find_valid_gpt() - finds a valid GPT header and PTEs
991 *
992 * gpt is a GPT header ptr, filled on return.
993 * ptes is a PTEs ptr, filled on return.
994 *
995 * Description: returns 1 if found a valid gpt, 0 on error.
996 * If valid, returns pointers to PTEs.
997 */
find_valid_gpt(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** pgpt_pte)998 static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head,
999 gpt_entry **pgpt_pte)
1000 {
1001 int r;
1002
1003 r = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head,
1004 pgpt_pte);
1005
1006 if (r != 1) {
1007 if (r != 2)
1008 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
1009
1010 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), gpt_head,
1011 pgpt_pte) != 1) {
1012 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
1013 __func__);
1014 return 0;
1015 }
1016 if (r != 2)
1017 printf("%s: *** Using Backup GPT ***\n",
1018 __func__);
1019 }
1020 return 1;
1021 }
1022
1023 /**
1024 * alloc_read_gpt_entries(): reads partition entries from disk
1025 * @dev_desc
1026 * @gpt - GPT header
1027 *
1028 * Description: Returns ptes on success, NULL on error.
1029 * Allocates space for PTEs based on information found in @gpt.
1030 * Notes: remember to free pte when you're done!
1031 */
alloc_read_gpt_entries(struct blk_desc * dev_desc,gpt_header * pgpt_head)1032 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
1033 gpt_header *pgpt_head)
1034 {
1035 size_t count = 0, blk_cnt;
1036 lbaint_t blk;
1037 gpt_entry *pte = NULL;
1038
1039 if (!dev_desc || !pgpt_head) {
1040 printf("%s: Invalid Argument(s)\n", __func__);
1041 return NULL;
1042 }
1043
1044 count = le32_to_cpu(pgpt_head->num_partition_entries) *
1045 le32_to_cpu(pgpt_head->sizeof_partition_entry);
1046
1047 debug("%s: count = %u * %u = %lu\n", __func__,
1048 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
1049 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
1050 (ulong)count);
1051
1052 /* Allocate memory for PTE, remember to FREE */
1053 if (count != 0) {
1054 pte = memalign(ARCH_DMA_MINALIGN,
1055 PAD_TO_BLOCKSIZE(count, dev_desc));
1056 }
1057
1058 if (count == 0 || pte == NULL) {
1059 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
1060 __func__, (ulong)count);
1061 return NULL;
1062 }
1063
1064 /* Read GPT Entries from device */
1065 blk = le64_to_cpu(pgpt_head->partition_entry_lba);
1066 blk_cnt = BLOCK_CNT(count, dev_desc);
1067 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
1068 printf("*** ERROR: Can't read GPT Entries ***\n");
1069 free(pte);
1070 return NULL;
1071 }
1072 return pte;
1073 }
1074
1075 /**
1076 * is_pte_valid(): validates a single Partition Table Entry
1077 * @gpt_entry - Pointer to a single Partition Table Entry
1078 *
1079 * Description: returns 1 if valid, 0 on error.
1080 */
is_pte_valid(gpt_entry * pte)1081 static int is_pte_valid(gpt_entry * pte)
1082 {
1083 efi_guid_t unused_guid;
1084
1085 if (!pte) {
1086 printf("%s: Invalid Argument(s)\n", __func__);
1087 return 0;
1088 }
1089
1090 /* Only one validation for now:
1091 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1092 */
1093 memset(unused_guid.b, 0, sizeof(unused_guid.b));
1094
1095 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1096 sizeof(unused_guid.b)) == 0) {
1097
1098 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
1099 (unsigned int)(uintptr_t)pte);
1100
1101 return 0;
1102 } else {
1103 return 1;
1104 }
1105 }
1106
1107 /*
1108 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1109 * check EFI first, since a DOS partition is often used as a 'protective MBR'
1110 * with EFI.
1111 */
1112 U_BOOT_PART_TYPE(a_efi) = {
1113 .name = "EFI",
1114 .part_type = PART_TYPE_EFI,
1115 .max_entries = GPT_ENTRY_NUMBERS,
1116 .get_info = part_get_info_ptr(part_get_info_efi),
1117 .print = part_print_ptr(part_print_efi),
1118 .test = part_test_efi,
1119 };
1120 #endif
1121