1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) Copyright 2016 Google, Inc
4  */
5 
6 #include <common.h>
7 #include <clk-uclass.h>
8 #include <dm.h>
9 #include <log.h>
10 #include <asm/global_data.h>
11 #include <asm/io.h>
12 #include <asm/arch/scu_ast2500.h>
13 #include <dm/lists.h>
14 #include <dt-bindings/clock/aspeed-clock.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 
18 /*
19  * MAC Clock Delay settings, taken from Aspeed SDK
20  */
21 #define RGMII_TXCLK_ODLY		8
22 #define RMII_RXCLK_IDLY		2
23 
24 /*
25  * TGMII Clock Duty constants, taken from Aspeed SDK
26  */
27 #define RGMII2_TXCK_DUTY	0x66
28 #define RGMII1_TXCK_DUTY	0x64
29 
30 #define D2PLL_DEFAULT_RATE	(250 * 1000 * 1000)
31 
32 DECLARE_GLOBAL_DATA_PTR;
33 
34 /*
35  * Clock divider/multiplier configuration struct.
36  * For H-PLL and M-PLL the formula is
37  * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1)
38  * M - Numerator
39  * N - Denumerator
40  * P - Post Divider
41  * They have the same layout in their control register.
42  *
43  * D-PLL and D2-PLL have extra divider (OD + 1), which is not
44  * yet needed and ignored by clock configurations.
45  */
46 struct ast2500_div_config {
47 	unsigned int num;
48 	unsigned int denum;
49 	unsigned int post_div;
50 };
51 
52 /*
53  * Get the rate of the M-PLL clock from input clock frequency and
54  * the value of the M-PLL Parameter Register.
55  */
ast2500_get_mpll_rate(ulong clkin,u32 mpll_reg)56 static ulong ast2500_get_mpll_rate(ulong clkin, u32 mpll_reg)
57 {
58 	const ulong num = (mpll_reg & SCU_MPLL_NUM_MASK) >> SCU_MPLL_NUM_SHIFT;
59 	const ulong denum = (mpll_reg & SCU_MPLL_DENUM_MASK)
60 			>> SCU_MPLL_DENUM_SHIFT;
61 	const ulong post_div = (mpll_reg & SCU_MPLL_POST_MASK)
62 			>> SCU_MPLL_POST_SHIFT;
63 
64 	return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1);
65 }
66 
67 /*
68  * Get the rate of the H-PLL clock from input clock frequency and
69  * the value of the H-PLL Parameter Register.
70  */
ast2500_get_hpll_rate(ulong clkin,u32 hpll_reg)71 static ulong ast2500_get_hpll_rate(ulong clkin, u32 hpll_reg)
72 {
73 	const ulong num = (hpll_reg & SCU_HPLL_NUM_MASK) >> SCU_HPLL_NUM_SHIFT;
74 	const ulong denum = (hpll_reg & SCU_HPLL_DENUM_MASK)
75 			>> SCU_HPLL_DENUM_SHIFT;
76 	const ulong post_div = (hpll_reg & SCU_HPLL_POST_MASK)
77 			>> SCU_HPLL_POST_SHIFT;
78 
79 	return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1);
80 }
81 
ast2500_get_clkin(struct ast2500_scu * scu)82 static ulong ast2500_get_clkin(struct ast2500_scu *scu)
83 {
84 	return readl(&scu->hwstrap) & SCU_HWSTRAP_CLKIN_25MHZ
85 			? 25 * 1000 * 1000 : 24 * 1000 * 1000;
86 }
87 
88 /**
89  * Get current rate or uart clock
90  *
91  * @scu SCU registers
92  * @uart_index UART index, 1-5
93  *
94  * @return current setting for uart clock rate
95  */
ast2500_get_uart_clk_rate(struct ast2500_scu * scu,int uart_index)96 static ulong ast2500_get_uart_clk_rate(struct ast2500_scu *scu, int uart_index)
97 {
98 	/*
99 	 * ast2500 datasheet is very confusing when it comes to UART clocks,
100 	 * especially when CLKIN = 25 MHz. The settings are in
101 	 * different registers and it is unclear how they interact.
102 	 *
103 	 * This has only been tested with default settings and CLKIN = 24 MHz.
104 	 */
105 	ulong uart_clkin;
106 
107 	if (readl(&scu->misc_ctrl2) &
108 	    (1 << (uart_index - 1 + SCU_MISC2_UARTCLK_SHIFT)))
109 		uart_clkin = 192 * 1000 * 1000;
110 	else
111 		uart_clkin = 24 * 1000 * 1000;
112 
113 	if (readl(&scu->misc_ctrl1) & SCU_MISC_UARTCLK_DIV13)
114 		uart_clkin /= 13;
115 
116 	return uart_clkin;
117 }
118 
ast2500_clk_get_rate(struct clk * clk)119 static ulong ast2500_clk_get_rate(struct clk *clk)
120 {
121 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
122 	ulong clkin = ast2500_get_clkin(priv->scu);
123 	ulong rate;
124 
125 	switch (clk->id) {
126 	case ASPEED_CLK_HPLL:
127 		/*
128 		 * This ignores dynamic/static slowdown of ARMCLK and may
129 		 * be inaccurate.
130 		 */
131 		rate = ast2500_get_hpll_rate(clkin,
132 					     readl(&priv->scu->h_pll_param));
133 		break;
134 	case ASPEED_CLK_MPLL:
135 		rate = ast2500_get_mpll_rate(clkin,
136 					     readl(&priv->scu->m_pll_param));
137 		break;
138 	case ASPEED_CLK_APB:
139 		{
140 			ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1)
141 						  & SCU_PCLK_DIV_MASK)
142 						 >> SCU_PCLK_DIV_SHIFT);
143 			rate = ast2500_get_hpll_rate(clkin,
144 						     readl(&priv->
145 							   scu->h_pll_param));
146 			rate = rate / apb_div;
147 		}
148 		break;
149 	case ASPEED_CLK_SDIO:
150 		{
151 			ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1)
152 						  & SCU_SDCLK_DIV_MASK)
153 						 >> SCU_SDCLK_DIV_SHIFT);
154 			rate = ast2500_get_hpll_rate(clkin,
155 						     readl(&priv->
156 							   scu->h_pll_param));
157 			rate = rate / apb_div;
158 		}
159 		break;
160 	case ASPEED_CLK_GATE_UART1CLK:
161 		rate = ast2500_get_uart_clk_rate(priv->scu, 1);
162 		break;
163 	case ASPEED_CLK_GATE_UART2CLK:
164 		rate = ast2500_get_uart_clk_rate(priv->scu, 2);
165 		break;
166 	case ASPEED_CLK_GATE_UART3CLK:
167 		rate = ast2500_get_uart_clk_rate(priv->scu, 3);
168 		break;
169 	case ASPEED_CLK_GATE_UART4CLK:
170 		rate = ast2500_get_uart_clk_rate(priv->scu, 4);
171 		break;
172 	case ASPEED_CLK_GATE_UART5CLK:
173 		rate = ast2500_get_uart_clk_rate(priv->scu, 5);
174 		break;
175 	default:
176 		return -ENOENT;
177 	}
178 
179 	return rate;
180 }
181 
182 struct ast2500_clock_config {
183 	ulong input_rate;
184 	ulong rate;
185 	struct ast2500_div_config cfg;
186 };
187 
188 static const struct ast2500_clock_config ast2500_clock_config_defaults[] = {
189 	{ 24000000, 250000000, { .num = 124, .denum = 1, .post_div = 5 } },
190 };
191 
ast2500_get_clock_config_default(ulong input_rate,ulong requested_rate,struct ast2500_div_config * cfg)192 static bool ast2500_get_clock_config_default(ulong input_rate,
193 					     ulong requested_rate,
194 					     struct ast2500_div_config *cfg)
195 {
196 	int i;
197 
198 	for (i = 0; i < ARRAY_SIZE(ast2500_clock_config_defaults); i++) {
199 		const struct ast2500_clock_config *default_cfg =
200 			&ast2500_clock_config_defaults[i];
201 		if (default_cfg->input_rate == input_rate &&
202 		    default_cfg->rate == requested_rate) {
203 			*cfg = default_cfg->cfg;
204 			return true;
205 		}
206 	}
207 
208 	return false;
209 }
210 
211 /*
212  * @input_rate - the rate of input clock in Hz
213  * @requested_rate - desired output rate in Hz
214  * @div - this is an IN/OUT parameter, at input all fields of the config
215  * need to be set to their maximum allowed values.
216  * The result (the best config we could find), would also be returned
217  * in this structure.
218  *
219  * @return The clock rate, when the resulting div_config is used.
220  */
ast2500_calc_clock_config(ulong input_rate,ulong requested_rate,struct ast2500_div_config * cfg)221 static ulong ast2500_calc_clock_config(ulong input_rate, ulong requested_rate,
222 				       struct ast2500_div_config *cfg)
223 {
224 	/*
225 	 * The assumption is that kHz precision is good enough and
226 	 * also enough to avoid overflow when multiplying.
227 	 */
228 	const ulong input_rate_khz = input_rate / 1000;
229 	const ulong rate_khz = requested_rate / 1000;
230 	const struct ast2500_div_config max_vals = *cfg;
231 	struct ast2500_div_config it = { 0, 0, 0 };
232 	ulong delta = rate_khz;
233 	ulong new_rate_khz = 0;
234 
235 	/*
236 	 * Look for a well known frequency first.
237 	 */
238 	if (ast2500_get_clock_config_default(input_rate, requested_rate, cfg))
239 		return requested_rate;
240 
241 	for (; it.denum <= max_vals.denum; ++it.denum) {
242 		for (it.post_div = 0; it.post_div <= max_vals.post_div;
243 		     ++it.post_div) {
244 			it.num = (rate_khz * (it.post_div + 1) / input_rate_khz)
245 			    * (it.denum + 1);
246 			if (it.num > max_vals.num)
247 				continue;
248 
249 			new_rate_khz = (input_rate_khz
250 					* ((it.num + 1) / (it.denum + 1)))
251 			    / (it.post_div + 1);
252 
253 			/* Keep the rate below requested one. */
254 			if (new_rate_khz > rate_khz)
255 				continue;
256 
257 			if (new_rate_khz - rate_khz < delta) {
258 				delta = new_rate_khz - rate_khz;
259 				*cfg = it;
260 				if (delta == 0)
261 					return new_rate_khz * 1000;
262 			}
263 		}
264 	}
265 
266 	return new_rate_khz * 1000;
267 }
268 
ast2500_configure_ddr(struct ast2500_scu * scu,ulong rate)269 static ulong ast2500_configure_ddr(struct ast2500_scu *scu, ulong rate)
270 {
271 	ulong clkin = ast2500_get_clkin(scu);
272 	u32 mpll_reg;
273 	struct ast2500_div_config div_cfg = {
274 		.num = (SCU_MPLL_NUM_MASK >> SCU_MPLL_NUM_SHIFT),
275 		.denum = (SCU_MPLL_DENUM_MASK >> SCU_MPLL_DENUM_SHIFT),
276 		.post_div = (SCU_MPLL_POST_MASK >> SCU_MPLL_POST_SHIFT),
277 	};
278 
279 	ast2500_calc_clock_config(clkin, rate, &div_cfg);
280 
281 	mpll_reg = readl(&scu->m_pll_param);
282 	mpll_reg &= ~(SCU_MPLL_POST_MASK | SCU_MPLL_NUM_MASK
283 		      | SCU_MPLL_DENUM_MASK);
284 	mpll_reg |= (div_cfg.post_div << SCU_MPLL_POST_SHIFT)
285 	    | (div_cfg.num << SCU_MPLL_NUM_SHIFT)
286 	    | (div_cfg.denum << SCU_MPLL_DENUM_SHIFT);
287 
288 	ast_scu_unlock(scu);
289 	writel(mpll_reg, &scu->m_pll_param);
290 	ast_scu_lock(scu);
291 
292 	return ast2500_get_mpll_rate(clkin, mpll_reg);
293 }
294 
ast2500_configure_mac(struct ast2500_scu * scu,int index)295 static ulong ast2500_configure_mac(struct ast2500_scu *scu, int index)
296 {
297 	ulong clkin = ast2500_get_clkin(scu);
298 	ulong hpll_rate = ast2500_get_hpll_rate(clkin,
299 						readl(&scu->h_pll_param));
300 	ulong required_rate;
301 	u32 hwstrap;
302 	u32 divisor;
303 	u32 reset_bit;
304 	u32 clkstop_bit;
305 
306 	/*
307 	 * According to data sheet, for 10/100 mode the MAC clock frequency
308 	 * should be at least 25MHz and for 1000 mode at least 100MHz
309 	 */
310 	hwstrap = readl(&scu->hwstrap);
311 	if (hwstrap & (SCU_HWSTRAP_MAC1_RGMII | SCU_HWSTRAP_MAC2_RGMII))
312 		required_rate = 100 * 1000 * 1000;
313 	else
314 		required_rate = 25 * 1000 * 1000;
315 
316 	divisor = hpll_rate / required_rate;
317 
318 	if (divisor < 4) {
319 		/* Clock can't run fast enough, but let's try anyway */
320 		debug("MAC clock too slow\n");
321 		divisor = 4;
322 	} else if (divisor > 16) {
323 		/* Can't slow down the clock enough, but let's try anyway */
324 		debug("MAC clock too fast\n");
325 		divisor = 16;
326 	}
327 
328 	switch (index) {
329 	case 1:
330 		reset_bit = SCU_SYSRESET_MAC1;
331 		clkstop_bit = SCU_CLKSTOP_MAC1;
332 		break;
333 	case 2:
334 		reset_bit = SCU_SYSRESET_MAC2;
335 		clkstop_bit = SCU_CLKSTOP_MAC2;
336 		break;
337 	default:
338 		return -EINVAL;
339 	}
340 
341 	ast_scu_unlock(scu);
342 	clrsetbits_le32(&scu->clk_sel1, SCU_MACCLK_MASK,
343 			((divisor - 2) / 2) << SCU_MACCLK_SHIFT);
344 
345 	/*
346 	 * Disable MAC, start its clock and re-enable it.
347 	 * The procedure and the delays (100us & 10ms) are
348 	 * specified in the datasheet.
349 	 */
350 	setbits_le32(&scu->sysreset_ctrl1, reset_bit);
351 	udelay(100);
352 	clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit);
353 	mdelay(10);
354 	clrbits_le32(&scu->sysreset_ctrl1, reset_bit);
355 
356 	writel((RGMII2_TXCK_DUTY << SCU_CLKDUTY_RGMII2TXCK_SHIFT)
357 	       | (RGMII1_TXCK_DUTY << SCU_CLKDUTY_RGMII1TXCK_SHIFT),
358 	       &scu->clk_duty_sel);
359 
360 	ast_scu_lock(scu);
361 
362 	return required_rate;
363 }
364 
ast2500_configure_d2pll(struct ast2500_scu * scu,ulong rate)365 static ulong ast2500_configure_d2pll(struct ast2500_scu *scu, ulong rate)
366 {
367 	/*
368 	 * The values and the meaning of the next three
369 	 * parameters are undocumented. Taken from Aspeed SDK.
370 	 *
371 	 * TODO(clg@kaod.org): the SIP and SIC values depend on the
372 	 * Numerator value
373 	 */
374 	const u32 d2_pll_ext_param = 0x2c;
375 	const u32 d2_pll_sip = 0x11;
376 	const u32 d2_pll_sic = 0x18;
377 	u32 clk_delay_settings =
378 	    (RMII_RXCLK_IDLY << SCU_MICDS_MAC1RMII_RDLY_SHIFT)
379 	    | (RMII_RXCLK_IDLY << SCU_MICDS_MAC2RMII_RDLY_SHIFT)
380 	    | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC1RGMII_TXDLY_SHIFT)
381 	    | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC2RGMII_TXDLY_SHIFT);
382 	struct ast2500_div_config div_cfg = {
383 		.num = SCU_D2PLL_NUM_MASK >> SCU_D2PLL_NUM_SHIFT,
384 		.denum = SCU_D2PLL_DENUM_MASK >> SCU_D2PLL_DENUM_SHIFT,
385 		.post_div = SCU_D2PLL_POST_MASK >> SCU_D2PLL_POST_SHIFT,
386 	};
387 	ulong clkin = ast2500_get_clkin(scu);
388 	ulong new_rate;
389 
390 	ast_scu_unlock(scu);
391 	writel((d2_pll_ext_param << SCU_D2PLL_EXT1_PARAM_SHIFT)
392 	       | SCU_D2PLL_EXT1_OFF
393 	       | SCU_D2PLL_EXT1_RESET, &scu->d2_pll_ext_param[0]);
394 
395 	/*
396 	 * Select USB2.0 port1 PHY clock as a clock source for GCRT.
397 	 * This would disconnect it from D2-PLL.
398 	 */
399 	clrsetbits_le32(&scu->misc_ctrl1, SCU_MISC_D2PLL_OFF,
400 			SCU_MISC_GCRT_USB20CLK);
401 
402 	new_rate = ast2500_calc_clock_config(clkin, rate, &div_cfg);
403 	writel((d2_pll_sip << SCU_D2PLL_SIP_SHIFT)
404 	       | (d2_pll_sic << SCU_D2PLL_SIC_SHIFT)
405 	       | (div_cfg.num << SCU_D2PLL_NUM_SHIFT)
406 	       | (div_cfg.denum << SCU_D2PLL_DENUM_SHIFT)
407 	       | (div_cfg.post_div << SCU_D2PLL_POST_SHIFT),
408 	       &scu->d2_pll_param);
409 
410 	clrbits_le32(&scu->d2_pll_ext_param[0],
411 		     SCU_D2PLL_EXT1_OFF | SCU_D2PLL_EXT1_RESET);
412 
413 	clrsetbits_le32(&scu->misc_ctrl2,
414 			SCU_MISC2_RGMII_HPLL | SCU_MISC2_RMII_MPLL
415 			| SCU_MISC2_RGMII_CLKDIV_MASK |
416 			SCU_MISC2_RMII_CLKDIV_MASK,
417 			(4 << SCU_MISC2_RMII_CLKDIV_SHIFT));
418 
419 	writel(clk_delay_settings | SCU_MICDS_RGMIIPLL, &scu->mac_clk_delay);
420 	writel(clk_delay_settings, &scu->mac_clk_delay_100M);
421 	writel(clk_delay_settings, &scu->mac_clk_delay_10M);
422 
423 	ast_scu_lock(scu);
424 
425 	return new_rate;
426 }
427 
ast2500_clk_set_rate(struct clk * clk,ulong rate)428 static ulong ast2500_clk_set_rate(struct clk *clk, ulong rate)
429 {
430 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
431 
432 	ulong new_rate;
433 	switch (clk->id) {
434 	case ASPEED_CLK_MPLL:
435 		new_rate = ast2500_configure_ddr(priv->scu, rate);
436 		break;
437 	case ASPEED_CLK_D2PLL:
438 		new_rate = ast2500_configure_d2pll(priv->scu, rate);
439 		break;
440 	default:
441 		return -ENOENT;
442 	}
443 
444 	return new_rate;
445 }
446 
ast2500_clk_enable(struct clk * clk)447 static int ast2500_clk_enable(struct clk *clk)
448 {
449 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
450 
451 	switch (clk->id) {
452 	case ASPEED_CLK_SDIO:
453 		if (readl(&priv->scu->clk_stop_ctrl1) & SCU_CLKSTOP_SDCLK) {
454 			ast_scu_unlock(priv->scu);
455 
456 			setbits_le32(&priv->scu->sysreset_ctrl1,
457 				     SCU_SYSRESET_SDIO);
458 			udelay(100);
459 			clrbits_le32(&priv->scu->clk_stop_ctrl1,
460 				     SCU_CLKSTOP_SDCLK);
461 			mdelay(10);
462 			clrbits_le32(&priv->scu->sysreset_ctrl1,
463 				     SCU_SYSRESET_SDIO);
464 
465 			ast_scu_lock(priv->scu);
466 		}
467 		break;
468 	/*
469 	 * For MAC clocks the clock rate is
470 	 * configured based on whether RGMII or RMII mode has been selected
471 	 * through hardware strapping.
472 	 */
473 	case ASPEED_CLK_GATE_MAC1CLK:
474 		ast2500_configure_mac(priv->scu, 1);
475 		break;
476 	case ASPEED_CLK_GATE_MAC2CLK:
477 		ast2500_configure_mac(priv->scu, 2);
478 		break;
479 	case ASPEED_CLK_D2PLL:
480 		ast2500_configure_d2pll(priv->scu, D2PLL_DEFAULT_RATE);
481 		break;
482 	default:
483 		return -ENOENT;
484 	}
485 
486 	return 0;
487 }
488 
489 struct clk_ops ast2500_clk_ops = {
490 	.get_rate = ast2500_clk_get_rate,
491 	.set_rate = ast2500_clk_set_rate,
492 	.enable = ast2500_clk_enable,
493 };
494 
ast2500_clk_of_to_plat(struct udevice * dev)495 static int ast2500_clk_of_to_plat(struct udevice *dev)
496 {
497 	struct ast2500_clk_priv *priv = dev_get_priv(dev);
498 
499 	priv->scu = devfdt_get_addr_ptr(dev);
500 	if (IS_ERR(priv->scu))
501 		return PTR_ERR(priv->scu);
502 
503 	return 0;
504 }
505 
ast2500_clk_bind(struct udevice * dev)506 static int ast2500_clk_bind(struct udevice *dev)
507 {
508 	int ret;
509 
510 	/* The reset driver does not have a device node, so bind it here */
511 	ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev);
512 	if (ret)
513 		debug("Warning: No reset driver: ret=%d\n", ret);
514 
515 	return 0;
516 }
517 
518 static const struct udevice_id ast2500_clk_ids[] = {
519 	{ .compatible = "aspeed,ast2500-scu" },
520 	{ }
521 };
522 
523 U_BOOT_DRIVER(aspeed_ast2500_scu) = {
524 	.name		= "aspeed_ast2500_scu",
525 	.id		= UCLASS_CLK,
526 	.of_match	= ast2500_clk_ids,
527 	.priv_auto	= sizeof(struct ast2500_clk_priv),
528 	.ops		= &ast2500_clk_ops,
529 	.bind		= ast2500_clk_bind,
530 	.of_to_plat		= ast2500_clk_of_to_plat,
531 };
532