1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) ASPEED Technology Inc.
4 */
5
6 #include <common.h>
7 #include <clk-uclass.h>
8 #include <dm.h>
9 #include <asm/io.h>
10 #include <dm/lists.h>
11 #include <linux/delay.h>
12 #include <asm/arch/scu_ast2600.h>
13 #include <asm/global_data.h>
14 #include <dt-bindings/clock/ast2600-clock.h>
15 #include <dt-bindings/reset/ast2600-reset.h>
16
17 DECLARE_GLOBAL_DATA_PTR;
18
19 #define CLKIN_25M 25000000UL
20
21 /* MAC Clock Delay settings */
22 #define MAC12_DEF_DELAY_1G 0x0041b75d
23 #define MAC12_DEF_DELAY_100M 0x00417410
24 #define MAC12_DEF_DELAY_10M 0x00417410
25 #define MAC34_DEF_DELAY_1G 0x0010438a
26 #define MAC34_DEF_DELAY_100M 0x00104208
27 #define MAC34_DEF_DELAY_10M 0x00104208
28
29 /*
30 * 3-bit encode of CPU freqeucy
31 * Some code is duplicated
32 */
33 enum ast2600_cpu_freq {
34 CPU_FREQ_1200M_1,
35 CPU_FREQ_1600M_1,
36 CPU_FREQ_1200M_2,
37 CPU_FREQ_1600M_2,
38 CPU_FREQ_800M_1,
39 CPU_FREQ_800M_2,
40 CPU_FREQ_800M_3,
41 CPU_FREQ_800M_4,
42 };
43
44 struct ast2600_clk_priv {
45 struct ast2600_scu *scu;
46 };
47
48 /*
49 * Clock divider/multiplier configuration struct.
50 * For H-PLL and M-PLL the formula is
51 * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1)
52 * M - Numerator
53 * N - Denumerator
54 * P - Post Divider
55 * They have the same layout in their control register.
56 *
57 * D-PLL and D2-PLL have extra divider (OD + 1), which is not
58 * yet needed and ignored by clock configurations.
59 */
60 union ast2600_pll_reg {
61 uint32_t w;
62 struct {
63 unsigned int m : 13;
64 unsigned int n : 6;
65 unsigned int p : 4;
66 unsigned int off : 1;
67 unsigned int bypass : 1;
68 unsigned int reset : 1;
69 unsigned int reserved : 6;
70 } b;
71 };
72
73 struct ast2600_pll_cfg {
74 union ast2600_pll_reg reg;
75 unsigned int ext_reg;
76 };
77
78 struct ast2600_pll_desc {
79 uint32_t in;
80 uint32_t out;
81 struct ast2600_pll_cfg cfg;
82 };
83
84 static const struct ast2600_pll_desc ast2600_pll_lookup[] = {
85 {
86 .in = CLKIN_25M,
87 .out = 400000000,
88 .cfg.reg.b.m = 95,
89 .cfg.reg.b.n = 2,
90 .cfg.reg.b.p = 1,
91 .cfg.ext_reg = 0x31,
92 },
93 {
94 .in = CLKIN_25M,
95 .out = 200000000,
96 .cfg.reg.b.m = 127,
97 .cfg.reg.b.n = 0,
98 .cfg.reg.b.p = 15,
99 .cfg.ext_reg = 0x3f,
100 },
101 {
102 .in = CLKIN_25M,
103 .out = 334000000,
104 .cfg.reg.b.m = 667,
105 .cfg.reg.b.n = 4,
106 .cfg.reg.b.p = 9,
107 .cfg.ext_reg = 0x14d,
108 },
109 {
110 .in = CLKIN_25M,
111 .out = 1000000000,
112 .cfg.reg.b.m = 119,
113 .cfg.reg.b.n = 2,
114 .cfg.reg.b.p = 0,
115 .cfg.ext_reg = 0x3d,
116 },
117 {
118 .in = CLKIN_25M,
119 .out = 50000000,
120 .cfg.reg.b.m = 95,
121 .cfg.reg.b.n = 2,
122 .cfg.reg.b.p = 15,
123 .cfg.ext_reg = 0x31,
124 },
125 };
126
127 /* divisor tables */
128 static uint32_t axi_ahb_div0_table[] = {
129 3, 2, 3, 4,
130 };
131
132 static uint32_t axi_ahb_div1_table[] = {
133 3, 4, 6, 8,
134 };
135
136 static uint32_t axi_ahb_default_table[] = {
137 3, 4, 3, 4, 2, 2, 2, 2,
138 };
139
ast2600_get_pll_rate(struct ast2600_scu * scu,int pll_idx)140 extern uint32_t ast2600_get_pll_rate(struct ast2600_scu *scu, int pll_idx)
141 {
142 union ast2600_pll_reg pll_reg;
143 uint32_t hwstrap1;
144 uint32_t cpu_freq;
145 uint32_t mul = 1, div = 1;
146
147 switch (pll_idx) {
148 case ASPEED_CLK_APLL:
149 pll_reg.w = readl(&scu->apll);
150 break;
151 case ASPEED_CLK_DPLL:
152 pll_reg.w = readl(&scu->dpll);
153 break;
154 case ASPEED_CLK_EPLL:
155 pll_reg.w = readl(&scu->epll);
156 break;
157 case ASPEED_CLK_HPLL:
158 pll_reg.w = readl(&scu->hpll);
159 break;
160 case ASPEED_CLK_MPLL:
161 pll_reg.w = readl(&scu->mpll);
162 break;
163 }
164
165 if (!pll_reg.b.bypass) {
166 /* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1)
167 * HPLL Numerator (M) = fix 0x5F when SCU500[10]=1
168 * Fixed 0xBF when SCU500[10]=0 and SCU500[8]=1
169 * SCU200[12:0] (default 0x8F) when SCU510[10]=0 and SCU510[8]=0
170 * HPLL Denumerator (N) = SCU200[18:13] (default 0x2)
171 * HPLL Divider (P) = SCU200[22:19] (default 0x0)
172 * HPLL Bandwidth Adj (NB) = fix 0x2F when SCU500[10]=1
173 * Fixed 0x5F when SCU500[10]=0 and SCU500[8]=1
174 * SCU204[11:0] (default 0x31) when SCU500[10]=0 and SCU500[8]=0
175 */
176 if (pll_idx == ASPEED_CLK_HPLL) {
177 hwstrap1 = readl(&scu->hwstrap1);
178 cpu_freq = (hwstrap1 & SCU_HWSTRAP1_CPU_FREQ_MASK) >>
179 SCU_HWSTRAP1_CPU_FREQ_SHIFT;
180
181 switch (cpu_freq) {
182 case CPU_FREQ_800M_1:
183 case CPU_FREQ_800M_2:
184 case CPU_FREQ_800M_3:
185 case CPU_FREQ_800M_4:
186 pll_reg.b.m = 0x5f;
187 break;
188 case CPU_FREQ_1600M_1:
189 case CPU_FREQ_1600M_2:
190 pll_reg.b.m = 0xbf;
191 break;
192 default:
193 pll_reg.b.m = 0x8f;
194 break;
195 }
196 }
197
198 mul = (pll_reg.b.m + 1) / (pll_reg.b.n + 1);
199 div = (pll_reg.b.p + 1);
200 }
201
202 return ((CLKIN_25M * mul) / div);
203 }
204
ast2600_get_hclk_rate(struct ast2600_scu * scu)205 static uint32_t ast2600_get_hclk_rate(struct ast2600_scu *scu)
206 {
207 uint32_t rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
208 uint32_t axi_div, ahb_div;
209 uint32_t hwstrap1 = readl(&scu->hwstrap1);
210 uint32_t cpu_freq = (hwstrap1 & SCU_HWSTRAP1_CPU_FREQ_MASK) >>
211 SCU_HWSTRAP1_CPU_FREQ_SHIFT;
212 uint32_t axi_ahb_ratio = (hwstrap1 & SCU_HWSTRAP1_AXI_AHB_CLK_RATIO_MASK) >>
213 SCU_HWSTRAP1_AXI_AHB_CLK_RATIO_SHIFT;
214
215 if (hwstrap1 & SCU_HWSTRAP1_CPU_AXI_CLK_RATIO) {
216 axi_ahb_div1_table[0] = axi_ahb_default_table[cpu_freq] * 2;
217 axi_div = 1;
218 ahb_div = axi_ahb_div1_table[axi_ahb_ratio];
219 } else {
220 axi_ahb_div0_table[0] = axi_ahb_default_table[cpu_freq];
221 axi_div = 2;
222 ahb_div = axi_ahb_div0_table[axi_ahb_ratio];
223 }
224
225 return (rate / axi_div / ahb_div);
226 }
227
ast2600_get_bclk_rate(struct ast2600_scu * scu)228 static uint32_t ast2600_get_bclk_rate(struct ast2600_scu *scu)
229 {
230 uint32_t rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
231 uint32_t clksrc1 = readl(&scu->clksrc1);
232 uint32_t bclk_div = (clksrc1 & SCU_CLKSRC1_BCLK_DIV_MASK) >>
233 SCU_CLKSRC1_BCLK_DIV_SHIFT;
234
235 return (rate / ((bclk_div + 1) * 4));
236 }
237
ast2600_get_pclk1_rate(struct ast2600_scu * scu)238 static uint32_t ast2600_get_pclk1_rate(struct ast2600_scu *scu)
239 {
240 uint32_t rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
241 uint32_t clksrc1 = readl(&scu->clksrc1);
242 uint32_t pclk_div = (clksrc1 & SCU_CLKSRC1_PCLK_DIV_MASK) >>
243 SCU_CLKSRC1_PCLK_DIV_SHIFT;
244
245 return (rate / ((pclk_div + 1) * 4));
246 }
247
ast2600_get_pclk2_rate(struct ast2600_scu * scu)248 static uint32_t ast2600_get_pclk2_rate(struct ast2600_scu *scu)
249 {
250 uint32_t rate = ast2600_get_hclk_rate(scu);
251 uint32_t clksrc4 = readl(&scu->clksrc4);
252 uint32_t pclk_div = (clksrc4 & SCU_CLKSRC4_PCLK_DIV_MASK) >>
253 SCU_CLKSRC4_PCLK_DIV_SHIFT;
254
255 return (rate / ((pclk_div + 1) * 2));
256 }
257
ast2600_get_uxclk_in_rate(struct ast2600_scu * scu)258 static uint32_t ast2600_get_uxclk_in_rate(struct ast2600_scu *scu)
259 {
260 uint32_t rate = 0;
261 uint32_t clksrc5 = readl(&scu->clksrc5);
262 uint32_t uxclk = (clksrc5 & SCU_CLKSRC5_UXCLK_MASK) >>
263 SCU_CLKSRC5_UXCLK_SHIFT;
264
265 switch (uxclk) {
266 case 0:
267 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL) / 4;
268 break;
269 case 1:
270 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL) / 2;
271 break;
272 case 2:
273 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL);
274 break;
275 case 3:
276 rate = ast2600_get_hclk_rate(scu);
277 break;
278 }
279
280 return rate;
281 }
282
ast2600_get_huxclk_in_rate(struct ast2600_scu * scu)283 static uint32_t ast2600_get_huxclk_in_rate(struct ast2600_scu *scu)
284 {
285 uint32_t rate = 0;
286 uint32_t clksrc5 = readl(&scu->clksrc5);
287 uint32_t huxclk = (clksrc5 & SCU_CLKSRC5_HUXCLK_MASK) >>
288 SCU_CLKSRC5_HUXCLK_SHIFT;
289
290 switch (huxclk) {
291 case 0:
292 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL) / 4;
293 break;
294 case 1:
295 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL) / 2;
296 break;
297 case 2:
298 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL);
299 break;
300 case 3:
301 rate = ast2600_get_hclk_rate(scu);
302 break;
303 }
304
305 return rate;
306 }
307
ast2600_get_uart_uxclk_rate(struct ast2600_scu * scu)308 static uint32_t ast2600_get_uart_uxclk_rate(struct ast2600_scu *scu)
309 {
310 uint32_t rate = ast2600_get_uxclk_in_rate(scu);
311 uint32_t uart_clkgen = readl(&scu->uart_clkgen);
312 uint32_t n = (uart_clkgen & SCU_UART_CLKGEN_N_MASK) >>
313 SCU_UART_CLKGEN_N_SHIFT;
314 uint32_t r = (uart_clkgen & SCU_UART_CLKGEN_R_MASK) >>
315 SCU_UART_CLKGEN_R_SHIFT;
316
317 return ((rate * r) / (n * 2));
318 }
319
ast2600_get_uart_huxclk_rate(struct ast2600_scu * scu)320 static uint32_t ast2600_get_uart_huxclk_rate(struct ast2600_scu *scu)
321 {
322 uint32_t rate = ast2600_get_huxclk_in_rate(scu);
323 uint32_t huart_clkgen = readl(&scu->huart_clkgen);
324 uint32_t n = (huart_clkgen & SCU_HUART_CLKGEN_N_MASK) >>
325 SCU_HUART_CLKGEN_N_SHIFT;
326 uint32_t r = (huart_clkgen & SCU_HUART_CLKGEN_R_MASK) >>
327 SCU_HUART_CLKGEN_R_SHIFT;
328
329 return ((rate * r) / (n * 2));
330 }
331
ast2600_get_sdio_clk_rate(struct ast2600_scu * scu)332 static uint32_t ast2600_get_sdio_clk_rate(struct ast2600_scu *scu)
333 {
334 uint32_t rate = 0;
335 uint32_t clksrc4 = readl(&scu->clksrc4);
336 uint32_t sdio_div = (clksrc4 & SCU_CLKSRC4_SDIO_DIV_MASK) >>
337 SCU_CLKSRC4_SDIO_DIV_SHIFT;
338
339 if (clksrc4 & SCU_CLKSRC4_SDIO)
340 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL);
341 else
342 rate = ast2600_get_hclk_rate(scu);
343
344 return (rate / ((sdio_div + 1) * 2));
345 }
346
ast2600_get_emmc_clk_rate(struct ast2600_scu * scu)347 static uint32_t ast2600_get_emmc_clk_rate(struct ast2600_scu *scu)
348 {
349 uint32_t rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
350 uint32_t clksrc1 = readl(&scu->clksrc1);
351 uint32_t emmc_div = (clksrc1 & SCU_CLKSRC1_EMMC_DIV_MASK) >>
352 SCU_CLKSRC1_EMMC_DIV_SHIFT;
353
354 return (rate / ((emmc_div + 1) * 4));
355 }
356
ast2600_get_uart_clk_rate(struct ast2600_scu * scu,int uart_idx)357 static uint32_t ast2600_get_uart_clk_rate(struct ast2600_scu *scu, int uart_idx)
358 {
359 uint32_t rate = 0;
360 uint32_t uart5_clk = 0;
361 uint32_t clksrc2 = readl(&scu->clksrc2);
362 uint32_t clksrc4 = readl(&scu->clksrc4);
363 uint32_t clksrc5 = readl(&scu->clksrc5);
364 uint32_t misc_ctrl1 = readl(&scu->misc_ctrl1);
365
366 switch (uart_idx) {
367 case 1:
368 case 2:
369 case 3:
370 case 4:
371 case 6:
372 if (clksrc4 & BIT(uart_idx - 1))
373 rate = ast2600_get_uart_huxclk_rate(scu);
374 else
375 rate = ast2600_get_uart_uxclk_rate(scu);
376 break;
377 case 5:
378 /*
379 * SCU0C[12] and SCU304[14] together decide
380 * the UART5 clock generation
381 */
382 if (misc_ctrl1 & SCU_MISC_CTRL1_UART5_DIV)
383 uart5_clk = 0x1 << 1;
384
385 if (clksrc2 & SCU_CLKSRC2_UART5)
386 uart5_clk |= 0x1;
387
388 switch (uart5_clk) {
389 case 0:
390 rate = 24000000;
391 break;
392 case 1:
393 rate = 192000000;
394 break;
395 case 2:
396 rate = 24000000 / 13;
397 break;
398 case 3:
399 rate = 192000000 / 13;
400 break;
401 }
402
403 break;
404 case 7:
405 case 8:
406 case 9:
407 case 10:
408 case 11:
409 case 12:
410 case 13:
411 if (clksrc5 & BIT(uart_idx - 1))
412 rate = ast2600_get_uart_huxclk_rate(scu);
413 else
414 rate = ast2600_get_uart_uxclk_rate(scu);
415 break;
416 }
417
418 return rate;
419 }
420
ast2600_clk_get_rate(struct clk * clk)421 static ulong ast2600_clk_get_rate(struct clk *clk)
422 {
423 struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
424 ulong rate = 0;
425
426 switch (clk->id) {
427 case ASPEED_CLK_HPLL:
428 case ASPEED_CLK_EPLL:
429 case ASPEED_CLK_DPLL:
430 case ASPEED_CLK_MPLL:
431 case ASPEED_CLK_APLL:
432 rate = ast2600_get_pll_rate(priv->scu, clk->id);
433 break;
434 case ASPEED_CLK_AHB:
435 rate = ast2600_get_hclk_rate(priv->scu);
436 break;
437 case ASPEED_CLK_APB1:
438 rate = ast2600_get_pclk1_rate(priv->scu);
439 break;
440 case ASPEED_CLK_APB2:
441 rate = ast2600_get_pclk2_rate(priv->scu);
442 break;
443 case ASPEED_CLK_GATE_UART1CLK:
444 rate = ast2600_get_uart_clk_rate(priv->scu, 1);
445 break;
446 case ASPEED_CLK_GATE_UART2CLK:
447 rate = ast2600_get_uart_clk_rate(priv->scu, 2);
448 break;
449 case ASPEED_CLK_GATE_UART3CLK:
450 rate = ast2600_get_uart_clk_rate(priv->scu, 3);
451 break;
452 case ASPEED_CLK_GATE_UART4CLK:
453 rate = ast2600_get_uart_clk_rate(priv->scu, 4);
454 break;
455 case ASPEED_CLK_GATE_UART5CLK:
456 rate = ast2600_get_uart_clk_rate(priv->scu, 5);
457 break;
458 case ASPEED_CLK_BCLK:
459 rate = ast2600_get_bclk_rate(priv->scu);
460 break;
461 case ASPEED_CLK_SDIO:
462 rate = ast2600_get_sdio_clk_rate(priv->scu);
463 break;
464 case ASPEED_CLK_EMMC:
465 rate = ast2600_get_emmc_clk_rate(priv->scu);
466 break;
467 case ASPEED_CLK_UARTX:
468 rate = ast2600_get_uart_uxclk_rate(priv->scu);
469 break;
470 case ASPEED_CLK_HUARTX:
471 rate = ast2600_get_uart_huxclk_rate(priv->scu);
472 break;
473 default:
474 debug("can't get clk rate\n");
475 return -ENOENT;
476 }
477
478 return rate;
479 }
480
481 /**
482 * @brief lookup PLL divider config by input/output rate
483 * @param[in] *pll - PLL descriptor
484 * @return true - if PLL divider config is found, false - else
485 * The function caller shall fill "pll->in" and "pll->out",
486 * then this function will search the lookup table
487 * to find a valid PLL divider configuration.
488 */
ast2600_search_clock_config(struct ast2600_pll_desc * pll)489 static bool ast2600_search_clock_config(struct ast2600_pll_desc *pll)
490 {
491 uint32_t i;
492 const struct ast2600_pll_desc *def_desc;
493 bool is_found = false;
494
495 for (i = 0; i < ARRAY_SIZE(ast2600_pll_lookup); i++) {
496 def_desc = &ast2600_pll_lookup[i];
497
498 if (def_desc->in == pll->in && def_desc->out == pll->out) {
499 is_found = true;
500 pll->cfg.reg.w = def_desc->cfg.reg.w;
501 pll->cfg.ext_reg = def_desc->cfg.ext_reg;
502 break;
503 }
504 }
505 return is_found;
506 }
507
ast2600_configure_pll(struct ast2600_scu * scu,struct ast2600_pll_cfg * p_cfg,int pll_idx)508 static uint32_t ast2600_configure_pll(struct ast2600_scu *scu,
509 struct ast2600_pll_cfg *p_cfg, int pll_idx)
510 {
511 uint32_t addr, addr_ext;
512 uint32_t reg;
513
514 switch (pll_idx) {
515 case ASPEED_CLK_HPLL:
516 addr = (uint32_t)(&scu->hpll);
517 addr_ext = (uint32_t)(&scu->hpll_ext);
518 break;
519 case ASPEED_CLK_MPLL:
520 addr = (uint32_t)(&scu->mpll);
521 addr_ext = (uint32_t)(&scu->mpll_ext);
522 break;
523 case ASPEED_CLK_DPLL:
524 addr = (uint32_t)(&scu->dpll);
525 addr_ext = (uint32_t)(&scu->dpll_ext);
526 break;
527 case ASPEED_CLK_EPLL:
528 addr = (uint32_t)(&scu->epll);
529 addr_ext = (uint32_t)(&scu->epll_ext);
530 break;
531 case ASPEED_CLK_APLL:
532 addr = (uint32_t)(&scu->apll);
533 addr_ext = (uint32_t)(&scu->apll_ext);
534 break;
535 default:
536 debug("unknown PLL index\n");
537 return 1;
538 }
539
540 p_cfg->reg.b.bypass = 0;
541 p_cfg->reg.b.off = 1;
542 p_cfg->reg.b.reset = 1;
543
544 reg = readl(addr);
545 reg &= ~GENMASK(25, 0);
546 reg |= p_cfg->reg.w;
547 writel(reg, addr);
548
549 /* write extend parameter */
550 writel(p_cfg->ext_reg, addr_ext);
551 udelay(100);
552 p_cfg->reg.b.off = 0;
553 p_cfg->reg.b.reset = 0;
554 reg &= ~GENMASK(25, 0);
555 reg |= p_cfg->reg.w;
556 writel(reg, addr);
557 while (!(readl(addr_ext) & BIT(31)))
558 ;
559
560 return 0;
561 }
562
ast2600_configure_ddr(struct ast2600_scu * scu,ulong rate)563 static uint32_t ast2600_configure_ddr(struct ast2600_scu *scu, ulong rate)
564 {
565 struct ast2600_pll_desc mpll;
566
567 mpll.in = CLKIN_25M;
568 mpll.out = rate;
569 if (ast2600_search_clock_config(&mpll) == false) {
570 printf("error!! unable to find valid DDR clock setting\n");
571 return 0;
572 }
573 ast2600_configure_pll(scu, &mpll.cfg, ASPEED_CLK_MPLL);
574
575 return ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL);
576 }
577
ast2600_clk_set_rate(struct clk * clk,ulong rate)578 static ulong ast2600_clk_set_rate(struct clk *clk, ulong rate)
579 {
580 struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
581 ulong new_rate;
582
583 switch (clk->id) {
584 case ASPEED_CLK_MPLL:
585 new_rate = ast2600_configure_ddr(priv->scu, rate);
586 break;
587 default:
588 return -ENOENT;
589 }
590
591 return new_rate;
592 }
593
ast2600_configure_mac12_clk(struct ast2600_scu * scu)594 static uint32_t ast2600_configure_mac12_clk(struct ast2600_scu *scu)
595 {
596 /* scu340[25:0]: 1G default delay */
597 clrsetbits_le32(&scu->mac12_clk_delay, GENMASK(25, 0),
598 MAC12_DEF_DELAY_1G);
599
600 /* set 100M/10M default delay */
601 writel(MAC12_DEF_DELAY_100M, &scu->mac12_clk_delay_100M);
602 writel(MAC12_DEF_DELAY_10M, &scu->mac12_clk_delay_10M);
603
604 /* MAC AHB = HPLL / 6 */
605 clrsetbits_le32(&scu->clksrc1, SCU_CLKSRC1_MAC_DIV_MASK,
606 (0x2 << SCU_CLKSRC1_MAC_DIV_SHIFT));
607
608 return 0;
609 }
610
ast2600_configure_mac34_clk(struct ast2600_scu * scu)611 static uint32_t ast2600_configure_mac34_clk(struct ast2600_scu *scu)
612 {
613 /*
614 * scu350[31] RGMII 125M source: 0 = from IO pin
615 * scu350[25:0] MAC 1G delay
616 */
617 clrsetbits_le32(&scu->mac34_clk_delay, (BIT(31) | GENMASK(25, 0)),
618 MAC34_DEF_DELAY_1G);
619 writel(MAC34_DEF_DELAY_100M, &scu->mac34_clk_delay_100M);
620 writel(MAC34_DEF_DELAY_10M, &scu->mac34_clk_delay_10M);
621
622 /*
623 * clock source seletion and divider
624 * scu310[26:24] : MAC AHB bus clock = HCLK / 2
625 * scu310[18:16] : RMII 50M = HCLK_200M / 4
626 */
627 clrsetbits_le32(&scu->clksrc4,
628 (SCU_CLKSRC4_MAC_DIV_MASK | SCU_CLKSRC4_RMII34_DIV_MASK),
629 ((0x0 << SCU_CLKSRC4_MAC_DIV_SHIFT)
630 | (0x3 << SCU_CLKSRC4_RMII34_DIV_SHIFT)));
631
632 /*
633 * set driving strength
634 * scu458[3:2] : MAC4 driving strength
635 * scu458[1:0] : MAC3 driving strength
636 */
637 clrsetbits_le32(&scu->pinmux16,
638 SCU_PINCTRL16_MAC4_DRIVING_MASK | SCU_PINCTRL16_MAC3_DRIVING_MASK,
639 (0x3 << SCU_PINCTRL16_MAC4_DRIVING_SHIFT)
640 | (0x3 << SCU_PINCTRL16_MAC3_DRIVING_SHIFT));
641
642 return 0;
643 }
644
645 /**
646 * ast2600 RGMII clock source tree
647 * 125M from external PAD -------->|\
648 * HPLL -->|\ | |---->RGMII 125M for MAC#1 & MAC#2
649 * | |---->| divider |---->|/ +
650 * EPLL -->|/ |
651 * |
652 * +---------<-----------|RGMIICK PAD output enable|<-------------+
653 * |
654 * +--------------------------->|\
655 * | |----> RGMII 125M for MAC#3 & MAC#4
656 * HCLK 200M ---->|divider|---->|/
657 * To simplify the control flow:
658 * 1. RGMII 1/2 always use EPLL as the internal clock source
659 * 2. RGMII 3/4 always use RGMIICK pad as the RGMII 125M source
660 * 125M from external PAD -------->|\
661 * | |---->RGMII 125M for MAC#1 & MAC#2
662 * EPLL---->| divider |--->|/ +
663 * |
664 * +<--------------------|RGMIICK PAD output enable|<-------------+
665 * |
666 * +--------------------------->RGMII 125M for MAC#3 & MAC#4
667 */
668 #define RGMIICK_SRC_PAD 0
669 #define RGMIICK_SRC_EPLL 1 /* recommended */
670 #define RGMIICK_SRC_HPLL 2
671
672 #define RGMIICK_DIV2 1
673 #define RGMIICK_DIV3 2
674 #define RGMIICK_DIV4 3
675 #define RGMIICK_DIV5 4
676 #define RGMIICK_DIV6 5
677 #define RGMIICK_DIV7 6
678 #define RGMIICK_DIV8 7 /* recommended */
679
680 #define RMIICK_DIV4 0
681 #define RMIICK_DIV8 1
682 #define RMIICK_DIV12 2
683 #define RMIICK_DIV16 3
684 #define RMIICK_DIV20 4 /* recommended */
685 #define RMIICK_DIV24 5
686 #define RMIICK_DIV28 6
687 #define RMIICK_DIV32 7
688
689 struct ast2600_mac_clk_div {
690 uint32_t src; /* 0=external PAD, 1=internal PLL */
691 uint32_t fin; /* divider input speed */
692 uint32_t n; /* 0=div2, 1=div2, 2=div3, 3=div4,...,7=div8 */
693 uint32_t fout; /* fout = fin / n */
694 };
695
696 struct ast2600_mac_clk_div rgmii_clk_defconfig = {
697 .src = ASPEED_CLK_EPLL,
698 .fin = 1000000000,
699 .n = RGMIICK_DIV8,
700 .fout = 125000000,
701 };
702
703 struct ast2600_mac_clk_div rmii_clk_defconfig = {
704 .src = ASPEED_CLK_EPLL,
705 .fin = 1000000000,
706 .n = RMIICK_DIV20,
707 .fout = 50000000,
708 };
709
ast2600_init_mac_pll(struct ast2600_scu * p_scu,struct ast2600_mac_clk_div * p_cfg)710 static void ast2600_init_mac_pll(struct ast2600_scu *p_scu,
711 struct ast2600_mac_clk_div *p_cfg)
712 {
713 struct ast2600_pll_desc pll;
714
715 pll.in = CLKIN_25M;
716 pll.out = p_cfg->fin;
717 if (ast2600_search_clock_config(&pll) == false) {
718 pr_err("unable to find valid ETHNET MAC clock setting\n");
719 return;
720 }
721 ast2600_configure_pll(p_scu, &pll.cfg, p_cfg->src);
722 }
723
ast2600_init_rgmii_clk(struct ast2600_scu * p_scu,struct ast2600_mac_clk_div * p_cfg)724 static void ast2600_init_rgmii_clk(struct ast2600_scu *p_scu,
725 struct ast2600_mac_clk_div *p_cfg)
726 {
727 uint32_t reg_304 = readl(&p_scu->clksrc2);
728 uint32_t reg_340 = readl(&p_scu->mac12_clk_delay);
729 uint32_t reg_350 = readl(&p_scu->mac34_clk_delay);
730
731 reg_340 &= ~GENMASK(31, 29);
732 /* scu340[28]: RGMIICK PAD output enable (to MAC 3/4) */
733 reg_340 |= BIT(28);
734 if (p_cfg->src == ASPEED_CLK_EPLL || p_cfg->src == ASPEED_CLK_HPLL) {
735 /*
736 * re-init PLL if the current PLL output frequency doesn't match
737 * the divider setting
738 */
739 if (p_cfg->fin != ast2600_get_pll_rate(p_scu, p_cfg->src))
740 ast2600_init_mac_pll(p_scu, p_cfg);
741 /* scu340[31]: select RGMII 125M from internal source */
742 reg_340 |= BIT(31);
743 }
744
745 reg_304 &= ~GENMASK(23, 20);
746
747 /* set clock divider */
748 reg_304 |= (p_cfg->n & 0x7) << 20;
749
750 /* select internal clock source */
751 if (p_cfg->src == ASPEED_CLK_HPLL)
752 reg_304 |= BIT(23);
753
754 /* RGMII 3/4 clock source select */
755 reg_350 &= ~BIT(31);
756
757 writel(reg_304, &p_scu->clksrc2);
758 writel(reg_340, &p_scu->mac12_clk_delay);
759 writel(reg_350, &p_scu->mac34_clk_delay);
760 }
761
762 /**
763 * ast2600 RMII/NCSI clock source tree
764 * HPLL -->|\
765 * | |---->| divider |----> RMII 50M for MAC#1 & MAC#2
766 * EPLL -->|/
767 * HCLK(SCLICLK)---->| divider |----> RMII 50M for MAC#3 & MAC#4
768 */
ast2600_init_rmii_clk(struct ast2600_scu * p_scu,struct ast2600_mac_clk_div * p_cfg)769 static void ast2600_init_rmii_clk(struct ast2600_scu *p_scu,
770 struct ast2600_mac_clk_div *p_cfg)
771 {
772 uint32_t clksrc2 = readl(&p_scu->clksrc2);
773 uint32_t clksrc4 = readl(&p_scu->clksrc4);
774
775 if (p_cfg->src == ASPEED_CLK_EPLL || p_cfg->src == ASPEED_CLK_HPLL) {
776 /*
777 * re-init PLL if the current PLL output frequency doesn't match
778 * the divider setting
779 */
780 if (p_cfg->fin != ast2600_get_pll_rate(p_scu, p_cfg->src))
781 ast2600_init_mac_pll(p_scu, p_cfg);
782 }
783
784 clksrc2 &= ~(SCU_CLKSRC2_RMII12 | SCU_CLKSRC2_RMII12_DIV_MASK);
785
786 /* set RMII 1/2 clock divider */
787 clksrc2 |= (p_cfg->n & 0x7) << 16;
788
789 /* RMII clock source selection */
790 if (p_cfg->src == ASPEED_CLK_HPLL)
791 clksrc2 |= SCU_CLKSRC2_RMII12;
792
793 /* set RMII 3/4 clock divider */
794 clksrc4 &= ~SCU_CLKSRC4_RMII34_DIV_MASK;
795 clksrc4 |= (0x3 << SCU_CLKSRC4_RMII34_DIV_SHIFT);
796
797 writel(clksrc2, &p_scu->clksrc2);
798 writel(clksrc4, &p_scu->clksrc4);
799 }
800
ast2600_configure_mac(struct ast2600_scu * scu,int index)801 static uint32_t ast2600_configure_mac(struct ast2600_scu *scu, int index)
802 {
803 uint32_t reset_bit;
804 uint32_t clkgate_bit;
805
806 switch (index) {
807 case 1:
808 reset_bit = BIT(ASPEED_RESET_MAC1);
809 clkgate_bit = SCU_CLKGATE1_MAC1;
810 writel(reset_bit, &scu->modrst_ctrl1);
811 udelay(100);
812 writel(clkgate_bit, &scu->clkgate_clr1);
813 mdelay(10);
814 writel(reset_bit, &scu->modrst_clr1);
815 break;
816 case 2:
817 reset_bit = BIT(ASPEED_RESET_MAC2);
818 clkgate_bit = SCU_CLKGATE1_MAC2;
819 writel(reset_bit, &scu->modrst_ctrl1);
820 udelay(100);
821 writel(clkgate_bit, &scu->clkgate_clr1);
822 mdelay(10);
823 writel(reset_bit, &scu->modrst_clr1);
824 break;
825 case 3:
826 reset_bit = BIT(ASPEED_RESET_MAC3 - 32);
827 clkgate_bit = SCU_CLKGATE2_MAC3;
828 writel(reset_bit, &scu->modrst_ctrl2);
829 udelay(100);
830 writel(clkgate_bit, &scu->clkgate_clr2);
831 mdelay(10);
832 writel(reset_bit, &scu->modrst_clr2);
833 break;
834 case 4:
835 reset_bit = BIT(ASPEED_RESET_MAC4 - 32);
836 clkgate_bit = SCU_CLKGATE2_MAC4;
837 writel(reset_bit, &scu->modrst_ctrl2);
838 udelay(100);
839 writel(clkgate_bit, &scu->clkgate_clr2);
840 mdelay(10);
841 writel(reset_bit, &scu->modrst_clr2);
842 break;
843 default:
844 return -EINVAL;
845 }
846
847 return 0;
848 }
849
ast2600_configure_rsa_ecc_clk(struct ast2600_scu * scu)850 static void ast2600_configure_rsa_ecc_clk(struct ast2600_scu *scu)
851 {
852 uint32_t clksrc1 = readl(&scu->clksrc1);
853
854 /* Configure RSA clock = HPLL/3 */
855 clksrc1 |= SCU_CLKSRC1_ECC_RSA;
856 clksrc1 &= ~SCU_CLKSRC1_ECC_RSA_DIV_MASK;
857 clksrc1 |= (2 << SCU_CLKSRC1_ECC_RSA_DIV_SHIFT);
858
859 writel(clksrc1, &scu->clksrc1);
860 }
861
ast2600_enable_sdclk(struct ast2600_scu * scu)862 static ulong ast2600_enable_sdclk(struct ast2600_scu *scu)
863 {
864 uint32_t reset_bit;
865 uint32_t clkgate_bit;
866
867 reset_bit = BIT(ASPEED_RESET_SD - 32);
868 clkgate_bit = SCU_CLKGATE2_SDIO;
869
870 writel(reset_bit, &scu->modrst_ctrl2);
871 udelay(100);
872 writel(clkgate_bit, &scu->clkgate_clr2);
873 mdelay(10);
874 writel(reset_bit, &scu->modrst_clr2);
875
876 return 0;
877 }
878
ast2600_enable_extsdclk(struct ast2600_scu * scu)879 static ulong ast2600_enable_extsdclk(struct ast2600_scu *scu)
880 {
881 int i = 0;
882 uint32_t div = 0;
883 uint32_t rate = 0;
884 uint32_t clksrc4 = readl(&scu->clksrc4);
885
886 /*
887 * ast2600 SD controller max clk is 200Mhz
888 * use apll for clock source 800/4 = 200
889 * controller max is 200mhz
890 */
891 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_APLL);
892 for (i = 0; i < 8; i++) {
893 div = (i + 1) * 2;
894 if ((rate / div) <= 200000000)
895 break;
896 }
897 clksrc4 &= ~SCU_CLKSRC4_SDIO_DIV_MASK;
898 clksrc4 |= (i << SCU_CLKSRC4_SDIO_DIV_SHIFT);
899 clksrc4 |= SCU_CLKSRC4_SDIO;
900 writel(clksrc4, &scu->clksrc4);
901
902 setbits_le32(&scu->clksrc4, SCU_CLKSRC4_SDIO_EN);
903
904 return 0;
905 }
906
ast2600_enable_emmcclk(struct ast2600_scu * scu)907 static ulong ast2600_enable_emmcclk(struct ast2600_scu *scu)
908 {
909 uint32_t reset_bit;
910 uint32_t clkgate_bit;
911
912 reset_bit = BIT(ASPEED_RESET_EMMC);
913 clkgate_bit = SCU_CLKGATE1_EMMC;
914
915 writel(reset_bit, &scu->modrst_ctrl1);
916 udelay(100);
917 writel(clkgate_bit, &scu->clkgate_clr1);
918 mdelay(10);
919 writel(reset_bit, &scu->modrst_clr1);
920
921 return 0;
922 }
923
ast2600_enable_extemmcclk(struct ast2600_scu * scu)924 static ulong ast2600_enable_extemmcclk(struct ast2600_scu *scu)
925 {
926 int i = 0;
927 uint32_t div = 0;
928 uint32_t rate = 0;
929 uint32_t clksrc1 = readl(&scu->clksrc1);
930
931 /*
932 * ast2600 eMMC controller max clk is 200Mhz
933 * HPll->1/2->|\
934 * |->SCU300[11]->SCU300[14:12][1/N] +
935 * MPLL------>|/ |
936 * +----------------------------------------------+
937 * |
938 * +---------> EMMC12C[15:8][1/N]-> eMMC clk
939 */
940 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL);
941 for (i = 0; i < 8; i++) {
942 div = (i + 1) * 2;
943 if ((rate / div) <= 200000000)
944 break;
945 }
946
947 clksrc1 &= ~SCU_CLKSRC1_EMMC_DIV_MASK;
948 clksrc1 |= (i << SCU_CLKSRC1_EMMC_DIV_SHIFT);
949 clksrc1 |= SCU_CLKSRC1_EMMC;
950 writel(clksrc1, &scu->clksrc1);
951
952 setbits_le32(&scu->clksrc1, SCU_CLKSRC1_EMMC_EN);
953
954 return 0;
955 }
956
ast2600_enable_fsiclk(struct ast2600_scu * scu)957 static ulong ast2600_enable_fsiclk(struct ast2600_scu *scu)
958 {
959 uint32_t reset_bit;
960 uint32_t clkgate_bit;
961
962 reset_bit = BIT(ASPEED_RESET_FSI % 32);
963 clkgate_bit = SCU_CLKGATE2_FSI;
964
965 /* The FSI clock is shared between masters. If it's already on
966 * don't touch it, as that will reset the existing master.
967 */
968 if (!(readl(&scu->clkgate_ctrl2) & clkgate_bit)) {
969 debug("%s: already running, not touching it\n", __func__);
970 return 0;
971 }
972
973 writel(reset_bit, &scu->modrst_ctrl2);
974 udelay(100);
975 writel(clkgate_bit, &scu->clkgate_clr2);
976 mdelay(10);
977 writel(reset_bit, &scu->modrst_clr2);
978
979 return 0;
980 }
981
ast2600_enable_usbahclk(struct ast2600_scu * scu)982 static ulong ast2600_enable_usbahclk(struct ast2600_scu *scu)
983 {
984 uint32_t reset_bit;
985 uint32_t clkgate_bit;
986
987 reset_bit = BIT(ASPEED_RESET_EHCI_P1);
988 clkgate_bit = SCU_CLKGATE1_USB_HUB;
989
990 writel(reset_bit, &scu->modrst_ctrl1);
991 udelay(100);
992 writel(clkgate_bit, &scu->clkgate_ctrl1);
993 mdelay(20);
994 writel(reset_bit, &scu->modrst_clr1);
995
996 return 0;
997 }
998
ast2600_enable_usbbhclk(struct ast2600_scu * scu)999 static ulong ast2600_enable_usbbhclk(struct ast2600_scu *scu)
1000 {
1001 uint32_t reset_bit;
1002 uint32_t clkgate_bit;
1003
1004 reset_bit = BIT(ASPEED_RESET_EHCI_P2);
1005 clkgate_bit = SCU_CLKGATE1_USB_HOST2;
1006
1007 writel(reset_bit, &scu->modrst_ctrl1);
1008 udelay(100);
1009 writel(clkgate_bit, &scu->clkgate_clr1);
1010 mdelay(20);
1011 writel(reset_bit, &scu->modrst_clr1);
1012
1013 return 0;
1014 }
1015
ast2600_clk_enable(struct clk * clk)1016 static int ast2600_clk_enable(struct clk *clk)
1017 {
1018 struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
1019
1020 switch (clk->id) {
1021 case ASPEED_CLK_GATE_MAC1CLK:
1022 ast2600_configure_mac(priv->scu, 1);
1023 break;
1024 case ASPEED_CLK_GATE_MAC2CLK:
1025 ast2600_configure_mac(priv->scu, 2);
1026 break;
1027 case ASPEED_CLK_GATE_MAC3CLK:
1028 ast2600_configure_mac(priv->scu, 3);
1029 break;
1030 case ASPEED_CLK_GATE_MAC4CLK:
1031 ast2600_configure_mac(priv->scu, 4);
1032 break;
1033 case ASPEED_CLK_GATE_SDCLK:
1034 ast2600_enable_sdclk(priv->scu);
1035 break;
1036 case ASPEED_CLK_GATE_SDEXTCLK:
1037 ast2600_enable_extsdclk(priv->scu);
1038 break;
1039 case ASPEED_CLK_GATE_EMMCCLK:
1040 ast2600_enable_emmcclk(priv->scu);
1041 break;
1042 case ASPEED_CLK_GATE_EMMCEXTCLK:
1043 ast2600_enable_extemmcclk(priv->scu);
1044 break;
1045 case ASPEED_CLK_GATE_FSICLK:
1046 ast2600_enable_fsiclk(priv->scu);
1047 break;
1048 case ASPEED_CLK_GATE_USBPORT1CLK:
1049 ast2600_enable_usbahclk(priv->scu);
1050 break;
1051 case ASPEED_CLK_GATE_USBPORT2CLK:
1052 ast2600_enable_usbbhclk(priv->scu);
1053 break;
1054 default:
1055 pr_err("can't enable clk\n");
1056 return -ENOENT;
1057 }
1058
1059 return 0;
1060 }
1061
1062 struct clk_ops ast2600_clk_ops = {
1063 .get_rate = ast2600_clk_get_rate,
1064 .set_rate = ast2600_clk_set_rate,
1065 .enable = ast2600_clk_enable,
1066 };
1067
ast2600_clk_probe(struct udevice * dev)1068 static int ast2600_clk_probe(struct udevice *dev)
1069 {
1070 struct ast2600_clk_priv *priv = dev_get_priv(dev);
1071
1072 priv->scu = devfdt_get_addr_ptr(dev);
1073 if (IS_ERR(priv->scu))
1074 return PTR_ERR(priv->scu);
1075
1076 ast2600_init_rgmii_clk(priv->scu, &rgmii_clk_defconfig);
1077 ast2600_init_rmii_clk(priv->scu, &rmii_clk_defconfig);
1078 ast2600_configure_mac12_clk(priv->scu);
1079 ast2600_configure_mac34_clk(priv->scu);
1080 ast2600_configure_rsa_ecc_clk(priv->scu);
1081
1082 return 0;
1083 }
1084
ast2600_clk_bind(struct udevice * dev)1085 static int ast2600_clk_bind(struct udevice *dev)
1086 {
1087 int ret;
1088
1089 /* The reset driver does not have a device node, so bind it here */
1090 ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev);
1091 if (ret)
1092 debug("Warning: No reset driver: ret=%d\n", ret);
1093
1094 return 0;
1095 }
1096
1097 struct aspeed_clks {
1098 ulong id;
1099 const char *name;
1100 };
1101
1102 static struct aspeed_clks aspeed_clk_names[] = {
1103 { ASPEED_CLK_HPLL, "hpll" },
1104 { ASPEED_CLK_MPLL, "mpll" },
1105 { ASPEED_CLK_APLL, "apll" },
1106 { ASPEED_CLK_EPLL, "epll" },
1107 { ASPEED_CLK_DPLL, "dpll" },
1108 { ASPEED_CLK_AHB, "hclk" },
1109 { ASPEED_CLK_APB1, "pclk1" },
1110 { ASPEED_CLK_APB2, "pclk2" },
1111 { ASPEED_CLK_BCLK, "bclk" },
1112 { ASPEED_CLK_UARTX, "uxclk" },
1113 { ASPEED_CLK_HUARTX, "huxclk" },
1114 };
1115
soc_clk_dump(void)1116 int soc_clk_dump(void)
1117 {
1118 struct udevice *dev;
1119 struct clk clk;
1120 unsigned long rate;
1121 int i, ret;
1122
1123 ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(aspeed_scu),
1124 &dev);
1125 if (ret)
1126 return ret;
1127
1128 printf("Clk\t\tHz\n");
1129
1130 for (i = 0; i < ARRAY_SIZE(aspeed_clk_names); i++) {
1131 clk.id = aspeed_clk_names[i].id;
1132 ret = clk_request(dev, &clk);
1133 if (ret < 0) {
1134 debug("%s clk_request() failed: %d\n", __func__, ret);
1135 continue;
1136 }
1137
1138 ret = clk_get_rate(&clk);
1139 rate = ret;
1140
1141 clk_free(&clk);
1142
1143 if (ret == -ENOTSUPP) {
1144 printf("clk ID %lu not supported yet\n",
1145 aspeed_clk_names[i].id);
1146 continue;
1147 }
1148 if (ret < 0) {
1149 printf("%s %lu: get_rate err: %d\n", __func__,
1150 aspeed_clk_names[i].id, ret);
1151 continue;
1152 }
1153
1154 printf("%s(%3lu):\t%lu\n", aspeed_clk_names[i].name,
1155 aspeed_clk_names[i].id, rate);
1156 }
1157
1158 return 0;
1159 }
1160
1161 static const struct udevice_id ast2600_clk_ids[] = {
1162 { .compatible = "aspeed,ast2600-scu", },
1163 { },
1164 };
1165
1166 U_BOOT_DRIVER(aspeed_ast2600_scu) = {
1167 .name = "aspeed_ast2600_scu",
1168 .id = UCLASS_CLK,
1169 .of_match = ast2600_clk_ids,
1170 .priv_auto = sizeof(struct ast2600_clk_priv),
1171 .ops = &ast2600_clk_ops,
1172 .bind = ast2600_clk_bind,
1173 .probe = ast2600_clk_probe,
1174 };
1175