1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2008-2014 Freescale Semiconductor, Inc.
4  *
5  * Based on CAAM driver in drivers/crypto/caam in Linux
6  */
7 
8 #include <common.h>
9 #include <cpu_func.h>
10 #include <linux/kernel.h>
11 #include <log.h>
12 #include <malloc.h>
13 #include "fsl_sec.h"
14 #include "jr.h"
15 #include "jobdesc.h"
16 #include "desc_constr.h"
17 #include <time.h>
18 #include <asm/cache.h>
19 #ifdef CONFIG_FSL_CORENET
20 #include <asm/cache.h>
21 #include <asm/fsl_pamu.h>
22 #endif
23 #include <dm/lists.h>
24 
25 #define CIRC_CNT(head, tail, size)	(((head) - (tail)) & (size - 1))
26 #define CIRC_SPACE(head, tail, size)	CIRC_CNT((tail), (head) + 1, (size))
27 
28 uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
29 	0,
30 #if defined(CONFIG_ARCH_C29X)
31 	CONFIG_SYS_FSL_SEC_IDX_OFFSET,
32 	2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
33 #endif
34 };
35 
36 #define SEC_ADDR(idx)	\
37 	((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
38 
39 #define SEC_JR0_ADDR(idx)	\
40 	(SEC_ADDR(idx) +	\
41 	 (CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
42 
43 struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
44 
start_jr0(uint8_t sec_idx)45 static inline void start_jr0(uint8_t sec_idx)
46 {
47 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
48 	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
49 	u32 scfgr = sec_in32(&sec->scfgr);
50 
51 	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
52 		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
53 		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
54 		 */
55 		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
56 		    (scfgr & SEC_SCFGR_VIRT_EN))
57 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
58 	} else {
59 		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
60 		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
61 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
62 	}
63 }
64 
jr_reset_liodn(uint8_t sec_idx)65 static inline void jr_reset_liodn(uint8_t sec_idx)
66 {
67 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
68 	sec_out32(&sec->jrliodnr[0].ls, 0);
69 }
70 
jr_disable_irq(uint8_t sec_idx)71 static inline void jr_disable_irq(uint8_t sec_idx)
72 {
73 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
74 	uint32_t jrcfg = sec_in32(&regs->jrcfg1);
75 
76 	jrcfg = jrcfg | JR_INTMASK;
77 
78 	sec_out32(&regs->jrcfg1, jrcfg);
79 }
80 
jr_initregs(uint8_t sec_idx)81 static void jr_initregs(uint8_t sec_idx)
82 {
83 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
84 	struct jobring *jr = &jr0[sec_idx];
85 	phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
86 	phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
87 
88 #ifdef CONFIG_PHYS_64BIT
89 	sec_out32(&regs->irba_h, ip_base >> 32);
90 #else
91 	sec_out32(&regs->irba_h, 0x0);
92 #endif
93 	sec_out32(&regs->irba_l, (uint32_t)ip_base);
94 #ifdef CONFIG_PHYS_64BIT
95 	sec_out32(&regs->orba_h, op_base >> 32);
96 #else
97 	sec_out32(&regs->orba_h, 0x0);
98 #endif
99 	sec_out32(&regs->orba_l, (uint32_t)op_base);
100 	sec_out32(&regs->ors, JR_SIZE);
101 	sec_out32(&regs->irs, JR_SIZE);
102 
103 	if (!jr->irq)
104 		jr_disable_irq(sec_idx);
105 }
106 
jr_init(uint8_t sec_idx)107 static int jr_init(uint8_t sec_idx)
108 {
109 	struct jobring *jr = &jr0[sec_idx];
110 
111 	memset(jr, 0, sizeof(struct jobring));
112 
113 	jr->jq_id = DEFAULT_JR_ID;
114 	jr->irq = DEFAULT_IRQ;
115 
116 #ifdef CONFIG_FSL_CORENET
117 	jr->liodn = DEFAULT_JR_LIODN;
118 #endif
119 	jr->size = JR_SIZE;
120 	jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
121 				JR_SIZE * sizeof(dma_addr_t));
122 	if (!jr->input_ring)
123 		return -1;
124 
125 	jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
126 			      ARCH_DMA_MINALIGN);
127 	jr->output_ring =
128 	    (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
129 	if (!jr->output_ring)
130 		return -1;
131 
132 	memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
133 	memset(jr->output_ring, 0, jr->op_size);
134 
135 	start_jr0(sec_idx);
136 
137 	jr_initregs(sec_idx);
138 
139 	return 0;
140 }
141 
jr_sw_cleanup(uint8_t sec_idx)142 static int jr_sw_cleanup(uint8_t sec_idx)
143 {
144 	struct jobring *jr = &jr0[sec_idx];
145 
146 	jr->head = 0;
147 	jr->tail = 0;
148 	jr->read_idx = 0;
149 	jr->write_idx = 0;
150 	memset(jr->info, 0, sizeof(jr->info));
151 	memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
152 	memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
153 
154 	return 0;
155 }
156 
jr_hw_reset(uint8_t sec_idx)157 static int jr_hw_reset(uint8_t sec_idx)
158 {
159 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
160 	uint32_t timeout = 100000;
161 	uint32_t jrint, jrcr;
162 
163 	sec_out32(&regs->jrcr, JRCR_RESET);
164 	do {
165 		jrint = sec_in32(&regs->jrint);
166 	} while (((jrint & JRINT_ERR_HALT_MASK) ==
167 		  JRINT_ERR_HALT_INPROGRESS) && --timeout);
168 
169 	jrint = sec_in32(&regs->jrint);
170 	if (((jrint & JRINT_ERR_HALT_MASK) !=
171 	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
172 		return -1;
173 
174 	timeout = 100000;
175 	sec_out32(&regs->jrcr, JRCR_RESET);
176 	do {
177 		jrcr = sec_in32(&regs->jrcr);
178 	} while ((jrcr & JRCR_RESET) && --timeout);
179 
180 	if (timeout == 0)
181 		return -1;
182 
183 	return 0;
184 }
185 
186 /* -1 --- error, can't enqueue -- no space available */
jr_enqueue(uint32_t * desc_addr,void (* callback)(uint32_t status,void * arg),void * arg,uint8_t sec_idx)187 static int jr_enqueue(uint32_t *desc_addr,
188 	       void (*callback)(uint32_t status, void *arg),
189 	       void *arg, uint8_t sec_idx)
190 {
191 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
192 	struct jobring *jr = &jr0[sec_idx];
193 	int head = jr->head;
194 	uint32_t desc_word;
195 	int length = desc_len(desc_addr);
196 	int i;
197 #ifdef CONFIG_PHYS_64BIT
198 	uint32_t *addr_hi, *addr_lo;
199 #endif
200 
201 	/* The descriptor must be submitted to SEC block as per endianness
202 	 * of the SEC Block.
203 	 * So, if the endianness of Core and SEC block is different, each word
204 	 * of the descriptor will be byte-swapped.
205 	 */
206 	for (i = 0; i < length; i++) {
207 		desc_word = desc_addr[i];
208 		sec_out32((uint32_t *)&desc_addr[i], desc_word);
209 	}
210 
211 	phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
212 
213 	jr->info[head].desc_phys_addr = desc_phys_addr;
214 	jr->info[head].callback = (void *)callback;
215 	jr->info[head].arg = arg;
216 	jr->info[head].op_done = 0;
217 
218 	unsigned long start = (unsigned long)&jr->info[head] &
219 					~(ARCH_DMA_MINALIGN - 1);
220 	unsigned long end = ALIGN((unsigned long)&jr->info[head] +
221 				  sizeof(struct jr_info), ARCH_DMA_MINALIGN);
222 	flush_dcache_range(start, end);
223 
224 #ifdef CONFIG_PHYS_64BIT
225 	/* Write the 64 bit Descriptor address on Input Ring.
226 	 * The 32 bit hign and low part of the address will
227 	 * depend on endianness of SEC block.
228 	 */
229 #ifdef CONFIG_SYS_FSL_SEC_LE
230 	addr_lo = (uint32_t *)(&jr->input_ring[head]);
231 	addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
232 #elif defined(CONFIG_SYS_FSL_SEC_BE)
233 	addr_hi = (uint32_t *)(&jr->input_ring[head]);
234 	addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
235 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
236 
237 	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
238 	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
239 
240 #else
241 	/* Write the 32 bit Descriptor address on Input Ring. */
242 	sec_out32(&jr->input_ring[head], desc_phys_addr);
243 #endif /* ifdef CONFIG_PHYS_64BIT */
244 
245 	start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
246 	end = ALIGN((unsigned long)&jr->input_ring[head] +
247 		     sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
248 	flush_dcache_range(start, end);
249 
250 	jr->head = (head + 1) & (jr->size - 1);
251 
252 	/* Invalidate output ring */
253 	start = (unsigned long)jr->output_ring &
254 					~(ARCH_DMA_MINALIGN - 1);
255 	end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
256 		    ARCH_DMA_MINALIGN);
257 	invalidate_dcache_range(start, end);
258 
259 	sec_out32(&regs->irja, 1);
260 
261 	return 0;
262 }
263 
jr_dequeue(int sec_idx)264 static int jr_dequeue(int sec_idx)
265 {
266 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
267 	struct jobring *jr = &jr0[sec_idx];
268 	int head = jr->head;
269 	int tail = jr->tail;
270 	int idx, i, found;
271 	void (*callback)(uint32_t status, void *arg);
272 	void *arg = NULL;
273 #ifdef CONFIG_PHYS_64BIT
274 	uint32_t *addr_hi, *addr_lo;
275 #else
276 	uint32_t *addr;
277 #endif
278 
279 	while (sec_in32(&regs->orsf) && CIRC_CNT(jr->head, jr->tail,
280 						 jr->size)) {
281 
282 		found = 0;
283 
284 		phys_addr_t op_desc;
285 	#ifdef CONFIG_PHYS_64BIT
286 		/* Read the 64 bit Descriptor address from Output Ring.
287 		 * The 32 bit hign and low part of the address will
288 		 * depend on endianness of SEC block.
289 		 */
290 	#ifdef CONFIG_SYS_FSL_SEC_LE
291 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
292 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
293 	#elif defined(CONFIG_SYS_FSL_SEC_BE)
294 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
295 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
296 	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
297 
298 		op_desc = ((u64)sec_in32(addr_hi) << 32) |
299 			  ((u64)sec_in32(addr_lo));
300 
301 	#else
302 		/* Read the 32 bit Descriptor address from Output Ring. */
303 		addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
304 		op_desc = sec_in32(addr);
305 	#endif /* ifdef CONFIG_PHYS_64BIT */
306 
307 		uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
308 
309 		for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
310 			idx = (tail + i) & (jr->size - 1);
311 			if (op_desc == jr->info[idx].desc_phys_addr) {
312 				found = 1;
313 				break;
314 			}
315 		}
316 
317 		/* Error condition if match not found */
318 		if (!found)
319 			return -1;
320 
321 		jr->info[idx].op_done = 1;
322 		callback = (void *)jr->info[idx].callback;
323 		arg = jr->info[idx].arg;
324 
325 		/* When the job on tail idx gets done, increment
326 		 * tail till the point where job completed out of oredr has
327 		 * been taken into account
328 		 */
329 		if (idx == tail)
330 			do {
331 				tail = (tail + 1) & (jr->size - 1);
332 			} while (jr->info[tail].op_done);
333 
334 		jr->tail = tail;
335 		jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
336 
337 		sec_out32(&regs->orjr, 1);
338 		jr->info[idx].op_done = 0;
339 
340 		callback(status, arg);
341 	}
342 
343 	return 0;
344 }
345 
desc_done(uint32_t status,void * arg)346 static void desc_done(uint32_t status, void *arg)
347 {
348 	struct result *x = arg;
349 	x->status = status;
350 #ifndef CONFIG_SPL_BUILD
351 	caam_jr_strstatus(status);
352 #endif
353 	x->done = 1;
354 }
355 
run_descriptor_jr_idx(uint32_t * desc,uint8_t sec_idx)356 static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
357 {
358 	unsigned long long timeval = get_ticks();
359 	unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
360 	struct result op;
361 	int ret = 0;
362 
363 	memset(&op, 0, sizeof(op));
364 
365 	ret = jr_enqueue(desc, desc_done, &op, sec_idx);
366 	if (ret) {
367 		debug("Error in SEC enq\n");
368 		ret = JQ_ENQ_ERR;
369 		goto out;
370 	}
371 
372 	timeval = get_ticks();
373 	timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
374 	while (op.done != 1) {
375 		ret = jr_dequeue(sec_idx);
376 		if (ret) {
377 			debug("Error in SEC deq\n");
378 			ret = JQ_DEQ_ERR;
379 			goto out;
380 		}
381 
382 		if ((get_ticks() - timeval) > timeout) {
383 			debug("SEC Dequeue timed out\n");
384 			ret = JQ_DEQ_TO_ERR;
385 			goto out;
386 		}
387 	}
388 
389 	if (op.status) {
390 		debug("Error %x\n", op.status);
391 		ret = op.status;
392 	}
393 out:
394 	return ret;
395 }
396 
run_descriptor_jr(uint32_t * desc)397 int run_descriptor_jr(uint32_t *desc)
398 {
399 	return run_descriptor_jr_idx(desc, 0);
400 }
401 
jr_reset_sec(uint8_t sec_idx)402 static inline int jr_reset_sec(uint8_t sec_idx)
403 {
404 	if (jr_hw_reset(sec_idx) < 0)
405 		return -1;
406 
407 	/* Clean up the jobring structure maintained by software */
408 	jr_sw_cleanup(sec_idx);
409 
410 	return 0;
411 }
412 
jr_reset(void)413 int jr_reset(void)
414 {
415 	return jr_reset_sec(0);
416 }
417 
sec_reset_idx(uint8_t sec_idx)418 static inline int sec_reset_idx(uint8_t sec_idx)
419 {
420 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
421 	uint32_t mcfgr = sec_in32(&sec->mcfgr);
422 	uint32_t timeout = 100000;
423 
424 	mcfgr |= MCFGR_SWRST;
425 	sec_out32(&sec->mcfgr, mcfgr);
426 
427 	mcfgr |= MCFGR_DMA_RST;
428 	sec_out32(&sec->mcfgr, mcfgr);
429 	do {
430 		mcfgr = sec_in32(&sec->mcfgr);
431 	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
432 
433 	if (timeout == 0)
434 		return -1;
435 
436 	timeout = 100000;
437 	do {
438 		mcfgr = sec_in32(&sec->mcfgr);
439 	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
440 
441 	if (timeout == 0)
442 		return -1;
443 
444 	return 0;
445 }
sec_reset(void)446 int sec_reset(void)
447 {
448 	return sec_reset_idx(0);
449 }
450 #ifndef CONFIG_SPL_BUILD
deinstantiate_rng(u8 sec_idx,int state_handle_mask)451 static int deinstantiate_rng(u8 sec_idx, int state_handle_mask)
452 {
453 	u32 *desc;
454 	int sh_idx, ret = 0;
455 	int desc_size = ALIGN(sizeof(u32) * 2, ARCH_DMA_MINALIGN);
456 
457 	desc = memalign(ARCH_DMA_MINALIGN, desc_size);
458 	if (!desc) {
459 		debug("cannot allocate RNG init descriptor memory\n");
460 		return -ENOMEM;
461 	}
462 
463 	for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
464 		/*
465 		 * If the corresponding bit is set, then it means the state
466 		 * handle was initialized by us, and thus it needs to be
467 		 * deinitialized as well
468 		 */
469 
470 		if (state_handle_mask & RDSTA_IF(sh_idx)) {
471 			/*
472 			 * Create the descriptor for deinstantating this state
473 			 * handle.
474 			 */
475 			inline_cnstr_jobdesc_rng_deinstantiation(desc, sh_idx);
476 			flush_dcache_range((unsigned long)desc,
477 					   (unsigned long)desc + desc_size);
478 
479 			ret = run_descriptor_jr_idx(desc, sec_idx);
480 			if (ret) {
481 				printf("SEC%u:  RNG4 SH%d deinstantiation failed with error 0x%x\n",
482 				       sec_idx, sh_idx, ret);
483 				ret = -EIO;
484 				break;
485 			}
486 
487 			printf("SEC%u:  Deinstantiated RNG4 SH%d\n",
488 			       sec_idx, sh_idx);
489 		}
490 	}
491 
492 	free(desc);
493 	return ret;
494 }
495 
instantiate_rng(u8 sec_idx,int gen_sk)496 static int instantiate_rng(u8 sec_idx, int gen_sk)
497 {
498 	u32 *desc;
499 	u32 rdsta_val;
500 	int ret = 0, sh_idx, size;
501 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
502 	struct rng4tst __iomem *rng =
503 			(struct rng4tst __iomem *)&sec->rng;
504 
505 	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
506 	if (!desc) {
507 		printf("cannot allocate RNG init descriptor memory\n");
508 		return -1;
509 	}
510 
511 	for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
512 		/*
513 		 * If the corresponding bit is set, this state handle
514 		 * was initialized by somebody else, so it's left alone.
515 		 */
516 		rdsta_val = sec_in32(&rng->rdsta);
517 		if (rdsta_val & (RDSTA_IF(sh_idx))) {
518 			if (rdsta_val & RDSTA_PR(sh_idx))
519 				continue;
520 
521 			printf("SEC%u:  RNG4 SH%d was instantiated w/o prediction resistance. Tearing it down\n",
522 			       sec_idx, sh_idx);
523 
524 			ret = deinstantiate_rng(sec_idx, RDSTA_IF(sh_idx));
525 			if (ret)
526 				break;
527 		}
528 
529 		inline_cnstr_jobdesc_rng_instantiation(desc, sh_idx, gen_sk);
530 		size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
531 		flush_dcache_range((unsigned long)desc,
532 				   (unsigned long)desc + size);
533 
534 		ret = run_descriptor_jr_idx(desc, sec_idx);
535 
536 		if (ret)
537 			printf("SEC%u:  RNG4 SH%d instantiation failed with error 0x%x\n",
538 			       sec_idx, sh_idx, ret);
539 
540 		rdsta_val = sec_in32(&rng->rdsta);
541 		if (!(rdsta_val & RDSTA_IF(sh_idx))) {
542 			free(desc);
543 			return -1;
544 		}
545 
546 		memset(desc, 0, sizeof(uint32_t) * 6);
547 	}
548 
549 	free(desc);
550 
551 	return ret;
552 }
553 
get_rng_vid(uint8_t sec_idx)554 static u8 get_rng_vid(uint8_t sec_idx)
555 {
556 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
557 	u8 vid;
558 
559 	if (caam_get_era() < 10) {
560 		vid = (sec_in32(&sec->chavid_ls) & SEC_CHAVID_RNG_LS_MASK)
561 		       >> SEC_CHAVID_LS_RNG_SHIFT;
562 	} else {
563 		vid = (sec_in32(&sec->vreg.rng) & CHA_VER_VID_MASK)
564 		       >> CHA_VER_VID_SHIFT;
565 	}
566 
567 	return vid;
568 }
569 
570 /*
571  * By default, the TRNG runs for 200 clocks per sample;
572  * 1200 clocks per sample generates better entropy.
573  */
kick_trng(int ent_delay,uint8_t sec_idx)574 static void kick_trng(int ent_delay, uint8_t sec_idx)
575 {
576 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
577 	struct rng4tst __iomem *rng =
578 			(struct rng4tst __iomem *)&sec->rng;
579 	u32 val;
580 
581 	/* put RNG4 into program mode */
582 	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
583 	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
584 	 * length (in system clocks) of each Entropy sample taken
585 	 * */
586 	val = sec_in32(&rng->rtsdctl);
587 	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
588 	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
589 	sec_out32(&rng->rtsdctl, val);
590 	/* min. freq. count, equal to 1/4 of the entropy sample length */
591 	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
592 	/* disable maximum frequency count */
593 	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
594 	/*
595 	 * select raw sampling in both entropy shifter
596 	 * and statistical checker
597 	 */
598 	sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
599 	/* put RNG4 into run mode */
600 	sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
601 }
602 
rng_init(uint8_t sec_idx)603 static int rng_init(uint8_t sec_idx)
604 {
605 	int ret, gen_sk, ent_delay = RTSDCTL_ENT_DLY_MIN;
606 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
607 	struct rng4tst __iomem *rng =
608 			(struct rng4tst __iomem *)&sec->rng;
609 	u32 inst_handles;
610 
611 	gen_sk = !(sec_in32(&rng->rdsta) & RDSTA_SKVN);
612 	do {
613 		inst_handles = sec_in32(&rng->rdsta) & RDSTA_MASK;
614 
615 		/*
616 		 * If either of the SH's were instantiated by somebody else
617 		 * then it is assumed that the entropy
618 		 * parameters are properly set and thus the function
619 		 * setting these (kick_trng(...)) is skipped.
620 		 * Also, if a handle was instantiated, do not change
621 		 * the TRNG parameters.
622 		 */
623 		if (!inst_handles) {
624 			kick_trng(ent_delay, sec_idx);
625 			ent_delay += 400;
626 		}
627 		/*
628 		 * if instantiate_rng(...) fails, the loop will rerun
629 		 * and the kick_trng(...) function will modfiy the
630 		 * upper and lower limits of the entropy sampling
631 		 * interval, leading to a sucessful initialization of
632 		 * the RNG.
633 		 */
634 		ret = instantiate_rng(sec_idx, gen_sk);
635 	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
636 	if (ret) {
637 		printf("SEC%u:  Failed to instantiate RNG\n", sec_idx);
638 		return ret;
639 	}
640 
641 	 /* Enable RDB bit so that RNG works faster */
642 	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
643 
644 	return ret;
645 }
646 #endif
sec_init_idx(uint8_t sec_idx)647 int sec_init_idx(uint8_t sec_idx)
648 {
649 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
650 	uint32_t mcr = sec_in32(&sec->mcfgr);
651 	int ret = 0;
652 
653 #ifdef CONFIG_FSL_CORENET
654 	uint32_t liodnr;
655 	uint32_t liodn_ns;
656 	uint32_t liodn_s;
657 #endif
658 
659 	if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
660 		printf("SEC%u:  initialization failed\n", sec_idx);
661 		return -1;
662 	}
663 
664 	/*
665 	 * Modifying CAAM Read/Write Attributes
666 	 * For LS2080A
667 	 * For AXI Write - Cacheable, Write Back, Write allocate
668 	 * For AXI Read - Cacheable, Read allocate
669 	 * Only For LS2080a, to solve CAAM coherency issues
670 	 */
671 #ifdef CONFIG_ARCH_LS2080A
672 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
673 	mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
674 #else
675 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
676 #endif
677 
678 #ifdef CONFIG_PHYS_64BIT
679 	mcr |= (1 << MCFGR_PS_SHIFT);
680 #endif
681 	sec_out32(&sec->mcfgr, mcr);
682 
683 #ifdef CONFIG_FSL_CORENET
684 #ifdef CONFIG_SPL_BUILD
685 	/*
686 	 * For SPL Build, Set the Liodns in SEC JR0 for
687 	 * creating PAMU entries corresponding to these.
688 	 * For normal build, these are set in set_liodns().
689 	 */
690 	liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK;
691 	liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK;
692 
693 	liodnr = sec_in32(&sec->jrliodnr[0].ls) &
694 		 ~(JRNSLIODN_MASK | JRSLIODN_MASK);
695 	liodnr = liodnr |
696 		 (liodn_ns << JRNSLIODN_SHIFT) |
697 		 (liodn_s << JRSLIODN_SHIFT);
698 	sec_out32(&sec->jrliodnr[0].ls, liodnr);
699 #else
700 	liodnr = sec_in32(&sec->jrliodnr[0].ls);
701 	liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
702 	liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
703 #endif
704 #endif
705 
706 	ret = jr_init(sec_idx);
707 	if (ret < 0) {
708 		printf("SEC%u:  initialization failed\n", sec_idx);
709 		return -1;
710 	}
711 
712 #ifdef CONFIG_FSL_CORENET
713 	ret = sec_config_pamu_table(liodn_ns, liodn_s);
714 	if (ret < 0)
715 		return -1;
716 
717 	pamu_enable();
718 #endif
719 #ifndef CONFIG_SPL_BUILD
720 	if (get_rng_vid(sec_idx) >= 4) {
721 		if (rng_init(sec_idx) < 0) {
722 			printf("SEC%u:  RNG instantiation failed\n", sec_idx);
723 			return -1;
724 		}
725 
726 		if (IS_ENABLED(CONFIG_DM_RNG)) {
727 			ret = device_bind_driver(NULL, "caam-rng", "caam-rng",
728 						 NULL);
729 			if (ret)
730 				printf("Couldn't bind rng driver (%d)\n", ret);
731 		}
732 
733 		printf("SEC%u:  RNG instantiated\n", sec_idx);
734 	}
735 #endif
736 	return ret;
737 }
738 
sec_init(void)739 int sec_init(void)
740 {
741 	return sec_init_idx(0);
742 }
743