1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file provides ECC correction for more than 1 bit per block of data,
4 * using binary BCH codes. It relies on the generic BCH library lib/bch.c.
5 *
6 * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com>
7 *
8 */
9
10 #include <common.h>
11 #include <log.h>
12 #include <dm/devres.h>
13 /*#include <asm/io.h>*/
14 #include <linux/types.h>
15
16 #include <linux/bitops.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/nand_bch.h>
20 #include <linux/bch.h>
21 #include <malloc.h>
22
23 /**
24 * struct nand_bch_control - private NAND BCH control structure
25 * @bch: BCH control structure
26 * @ecclayout: private ecc layout for this BCH configuration
27 * @errloc: error location array
28 * @eccmask: XOR ecc mask, allows erased pages to be decoded as valid
29 */
30 struct nand_bch_control {
31 struct bch_control *bch;
32 struct nand_ecclayout ecclayout;
33 unsigned int *errloc;
34 unsigned char *eccmask;
35 };
36
37 /**
38 * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block
39 * @mtd: MTD block structure
40 * @buf: input buffer with raw data
41 * @code: output buffer with ECC
42 */
nand_bch_calculate_ecc(struct mtd_info * mtd,const unsigned char * buf,unsigned char * code)43 int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
44 unsigned char *code)
45 {
46 const struct nand_chip *chip = mtd_to_nand(mtd);
47 struct nand_bch_control *nbc = chip->ecc.priv;
48 unsigned int i;
49
50 memset(code, 0, chip->ecc.bytes);
51 encode_bch(nbc->bch, buf, chip->ecc.size, code);
52
53 /* apply mask so that an erased page is a valid codeword */
54 for (i = 0; i < chip->ecc.bytes; i++)
55 code[i] ^= nbc->eccmask[i];
56
57 return 0;
58 }
59
60 /**
61 * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s)
62 * @mtd: MTD block structure
63 * @buf: raw data read from the chip
64 * @read_ecc: ECC from the chip
65 * @calc_ecc: the ECC calculated from raw data
66 *
67 * Detect and correct bit errors for a data byte block
68 */
nand_bch_correct_data(struct mtd_info * mtd,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)69 int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf,
70 unsigned char *read_ecc, unsigned char *calc_ecc)
71 {
72 const struct nand_chip *chip = mtd_to_nand(mtd);
73 struct nand_bch_control *nbc = chip->ecc.priv;
74 unsigned int *errloc = nbc->errloc;
75 int i, count;
76
77 count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc,
78 NULL, errloc);
79 if (count > 0) {
80 for (i = 0; i < count; i++) {
81 if (errloc[i] < (chip->ecc.size*8))
82 /* error is located in data, correct it */
83 buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));
84 /* else error in ecc, no action needed */
85
86 pr_debug("%s: corrected bitflip %u\n",
87 __func__, errloc[i]);
88 }
89 } else if (count < 0) {
90 printk(KERN_ERR "ecc unrecoverable error\n");
91 count = -EBADMSG;
92 }
93 return count;
94 }
95
96 /**
97 * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction
98 * @mtd: MTD block structure
99 *
100 * Returns:
101 * a pointer to a new NAND BCH control structure, or NULL upon failure
102 *
103 * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes
104 * are used to compute BCH parameters m (Galois field order) and t (error
105 * correction capability). @eccbytes should be equal to the number of bytes
106 * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8.
107 *
108 * Example: to configure 4 bit correction per 512 bytes, you should pass
109 * @eccsize = 512 (thus, m=13 is the smallest integer such that 2^m-1 > 512*8)
110 * @eccbytes = 7 (7 bytes are required to store m*t = 13*4 = 52 bits)
111 */
nand_bch_init(struct mtd_info * mtd)112 struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
113 {
114 struct nand_chip *nand = mtd_to_nand(mtd);
115 unsigned int m, t, eccsteps, i;
116 struct nand_ecclayout *layout = nand->ecc.layout;
117 struct nand_bch_control *nbc = NULL;
118 unsigned char *erased_page;
119 unsigned int eccsize = nand->ecc.size;
120 unsigned int eccbytes = nand->ecc.bytes;
121 unsigned int eccstrength = nand->ecc.strength;
122
123 if (!eccbytes && eccstrength) {
124 eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8);
125 nand->ecc.bytes = eccbytes;
126 }
127
128 if (!eccsize || !eccbytes) {
129 printk(KERN_WARNING "ecc parameters not supplied\n");
130 goto fail;
131 }
132
133 m = fls(1+8*eccsize);
134 t = (eccbytes*8)/m;
135
136 nbc = kzalloc(sizeof(*nbc), GFP_KERNEL);
137 if (!nbc)
138 goto fail;
139
140 nbc->bch = init_bch(m, t, 0);
141 if (!nbc->bch)
142 goto fail;
143
144 /* verify that eccbytes has the expected value */
145 if (nbc->bch->ecc_bytes != eccbytes) {
146 printk(KERN_WARNING "invalid eccbytes %u, should be %u\n",
147 eccbytes, nbc->bch->ecc_bytes);
148 goto fail;
149 }
150
151 eccsteps = mtd->writesize/eccsize;
152
153 /* if no ecc placement scheme was provided, build one */
154 if (!layout) {
155
156 /* handle large page devices only */
157 if (mtd->oobsize < 64) {
158 printk(KERN_WARNING "must provide an oob scheme for "
159 "oobsize %d\n", mtd->oobsize);
160 goto fail;
161 }
162
163 layout = &nbc->ecclayout;
164 layout->eccbytes = eccsteps*eccbytes;
165
166 /* reserve 2 bytes for bad block marker */
167 if (layout->eccbytes+2 > mtd->oobsize) {
168 printk(KERN_WARNING "no suitable oob scheme available "
169 "for oobsize %d eccbytes %u\n", mtd->oobsize,
170 eccbytes);
171 goto fail;
172 }
173 /* put ecc bytes at oob tail */
174 for (i = 0; i < layout->eccbytes; i++)
175 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
176
177 layout->oobfree[0].offset = 2;
178 layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
179
180 nand->ecc.layout = layout;
181 }
182
183 /* sanity checks */
184 if (8*(eccsize+eccbytes) >= (1 << m)) {
185 printk(KERN_WARNING "eccsize %u is too large\n", eccsize);
186 goto fail;
187 }
188 if (layout->eccbytes != (eccsteps*eccbytes)) {
189 printk(KERN_WARNING "invalid ecc layout\n");
190 goto fail;
191 }
192
193 nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL);
194 nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL);
195 if (!nbc->eccmask || !nbc->errloc)
196 goto fail;
197 /*
198 * compute and store the inverted ecc of an erased ecc block
199 */
200 erased_page = kmalloc(eccsize, GFP_KERNEL);
201 if (!erased_page)
202 goto fail;
203
204 memset(erased_page, 0xff, eccsize);
205 memset(nbc->eccmask, 0, eccbytes);
206 encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask);
207 kfree(erased_page);
208
209 for (i = 0; i < eccbytes; i++)
210 nbc->eccmask[i] ^= 0xff;
211
212 if (!eccstrength)
213 nand->ecc.strength = (eccbytes * 8) / fls(8 * eccsize);
214
215 return nbc;
216 fail:
217 nand_bch_free(nbc);
218 return NULL;
219 }
220
221 /**
222 * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources
223 * @nbc: NAND BCH control structure
224 */
nand_bch_free(struct nand_bch_control * nbc)225 void nand_bch_free(struct nand_bch_control *nbc)
226 {
227 if (nbc) {
228 free_bch(nbc->bch);
229 kfree(nbc->errloc);
230 kfree(nbc->eccmask);
231 kfree(nbc);
232 }
233 }
234