1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2017 NXP Semiconductors
4 * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5 */
6
7 #include <common.h>
8 #include <blk.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <pci.h>
16 #include <time.h>
17 #include <dm/device-internal.h>
18 #include <linux/compat.h>
19 #include "nvme.h"
20
21 #define NVME_Q_DEPTH 2
22 #define NVME_AQ_DEPTH 2
23 #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
24 #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
25 #define NVME_CQ_ALLOCATION ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
26 ARCH_DMA_MINALIGN)
27 #define ADMIN_TIMEOUT 60
28 #define IO_TIMEOUT 30
29 #define MAX_PRP_POOL 512
30
31 enum nvme_queue_id {
32 NVME_ADMIN_Q,
33 NVME_IO_Q,
34 NVME_Q_NUM,
35 };
36
37 /*
38 * An NVM Express queue. Each device has at least two (one for admin
39 * commands and one for I/O commands).
40 */
41 struct nvme_queue {
42 struct nvme_dev *dev;
43 struct nvme_command *sq_cmds;
44 struct nvme_completion *cqes;
45 wait_queue_head_t sq_full;
46 u32 __iomem *q_db;
47 u16 q_depth;
48 s16 cq_vector;
49 u16 sq_head;
50 u16 sq_tail;
51 u16 cq_head;
52 u16 qid;
53 u8 cq_phase;
54 u8 cqe_seen;
55 unsigned long cmdid_data[];
56 };
57
nvme_wait_ready(struct nvme_dev * dev,bool enabled)58 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
59 {
60 u32 bit = enabled ? NVME_CSTS_RDY : 0;
61 int timeout;
62 ulong start;
63
64 /* Timeout field in the CAP register is in 500 millisecond units */
65 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
66
67 start = get_timer(0);
68 while (get_timer(start) < timeout) {
69 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
70 return 0;
71 }
72
73 return -ETIME;
74 }
75
nvme_setup_prps(struct nvme_dev * dev,u64 * prp2,int total_len,u64 dma_addr)76 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
77 int total_len, u64 dma_addr)
78 {
79 u32 page_size = dev->page_size;
80 int offset = dma_addr & (page_size - 1);
81 u64 *prp_pool;
82 int length = total_len;
83 int i, nprps;
84 u32 prps_per_page = (page_size >> 3) - 1;
85 u32 num_pages;
86
87 length -= (page_size - offset);
88
89 if (length <= 0) {
90 *prp2 = 0;
91 return 0;
92 }
93
94 if (length)
95 dma_addr += (page_size - offset);
96
97 if (length <= page_size) {
98 *prp2 = dma_addr;
99 return 0;
100 }
101
102 nprps = DIV_ROUND_UP(length, page_size);
103 num_pages = DIV_ROUND_UP(nprps, prps_per_page);
104
105 if (nprps > dev->prp_entry_num) {
106 free(dev->prp_pool);
107 /*
108 * Always increase in increments of pages. It doesn't waste
109 * much memory and reduces the number of allocations.
110 */
111 dev->prp_pool = memalign(page_size, num_pages * page_size);
112 if (!dev->prp_pool) {
113 printf("Error: malloc prp_pool fail\n");
114 return -ENOMEM;
115 }
116 dev->prp_entry_num = prps_per_page * num_pages;
117 }
118
119 prp_pool = dev->prp_pool;
120 i = 0;
121 while (nprps) {
122 if (i == ((page_size >> 3) - 1)) {
123 *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
124 page_size);
125 i = 0;
126 prp_pool += page_size;
127 }
128 *(prp_pool + i++) = cpu_to_le64(dma_addr);
129 dma_addr += page_size;
130 nprps--;
131 }
132 *prp2 = (ulong)dev->prp_pool;
133
134 flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
135 dev->prp_entry_num * sizeof(u64));
136
137 return 0;
138 }
139
nvme_get_cmd_id(void)140 static __le16 nvme_get_cmd_id(void)
141 {
142 static unsigned short cmdid;
143
144 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
145 }
146
nvme_read_completion_status(struct nvme_queue * nvmeq,u16 index)147 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
148 {
149 /*
150 * Single CQ entries are always smaller than a cache line, so we
151 * can't invalidate them individually. However CQ entries are
152 * read only by the CPU, so it's safe to always invalidate all of them,
153 * as the cache line should never become dirty.
154 */
155 ulong start = (ulong)&nvmeq->cqes[0];
156 ulong stop = start + NVME_CQ_ALLOCATION;
157
158 invalidate_dcache_range(start, stop);
159
160 return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
161 }
162
163 /**
164 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
165 *
166 * @nvmeq: The queue to use
167 * @cmd: The command to send
168 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)169 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
170 {
171 u16 tail = nvmeq->sq_tail;
172
173 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
174 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
175 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
176
177 if (++tail == nvmeq->q_depth)
178 tail = 0;
179 writel(tail, nvmeq->q_db);
180 nvmeq->sq_tail = tail;
181 }
182
nvme_submit_sync_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,u32 * result,unsigned timeout)183 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
184 struct nvme_command *cmd,
185 u32 *result, unsigned timeout)
186 {
187 u16 head = nvmeq->cq_head;
188 u16 phase = nvmeq->cq_phase;
189 u16 status;
190 ulong start_time;
191 ulong timeout_us = timeout * 100000;
192
193 cmd->common.command_id = nvme_get_cmd_id();
194 nvme_submit_cmd(nvmeq, cmd);
195
196 start_time = timer_get_us();
197
198 for (;;) {
199 status = nvme_read_completion_status(nvmeq, head);
200 if ((status & 0x01) == phase)
201 break;
202 if (timeout_us > 0 && (timer_get_us() - start_time)
203 >= timeout_us)
204 return -ETIMEDOUT;
205 }
206
207 status >>= 1;
208 if (status) {
209 printf("ERROR: status = %x, phase = %d, head = %d\n",
210 status, phase, head);
211 status = 0;
212 if (++head == nvmeq->q_depth) {
213 head = 0;
214 phase = !phase;
215 }
216 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
217 nvmeq->cq_head = head;
218 nvmeq->cq_phase = phase;
219
220 return -EIO;
221 }
222
223 if (result)
224 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
225
226 if (++head == nvmeq->q_depth) {
227 head = 0;
228 phase = !phase;
229 }
230 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
231 nvmeq->cq_head = head;
232 nvmeq->cq_phase = phase;
233
234 return status;
235 }
236
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)237 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
238 u32 *result)
239 {
240 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
241 result, ADMIN_TIMEOUT);
242 }
243
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)244 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
245 int qid, int depth)
246 {
247 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
248 if (!nvmeq)
249 return NULL;
250 memset(nvmeq, 0, sizeof(*nvmeq));
251
252 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
253 if (!nvmeq->cqes)
254 goto free_nvmeq;
255 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
256
257 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
258 if (!nvmeq->sq_cmds)
259 goto free_queue;
260 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
261
262 nvmeq->dev = dev;
263
264 nvmeq->cq_head = 0;
265 nvmeq->cq_phase = 1;
266 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
267 nvmeq->q_depth = depth;
268 nvmeq->qid = qid;
269 dev->queue_count++;
270 dev->queues[qid] = nvmeq;
271
272 return nvmeq;
273
274 free_queue:
275 free((void *)nvmeq->cqes);
276 free_nvmeq:
277 free(nvmeq);
278
279 return NULL;
280 }
281
nvme_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)282 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
283 {
284 struct nvme_command c;
285
286 memset(&c, 0, sizeof(c));
287 c.delete_queue.opcode = opcode;
288 c.delete_queue.qid = cpu_to_le16(id);
289
290 return nvme_submit_admin_cmd(dev, &c, NULL);
291 }
292
nvme_delete_sq(struct nvme_dev * dev,u16 sqid)293 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
294 {
295 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
296 }
297
nvme_delete_cq(struct nvme_dev * dev,u16 cqid)298 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
299 {
300 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
301 }
302
nvme_enable_ctrl(struct nvme_dev * dev)303 static int nvme_enable_ctrl(struct nvme_dev *dev)
304 {
305 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
306 dev->ctrl_config |= NVME_CC_ENABLE;
307 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
308
309 return nvme_wait_ready(dev, true);
310 }
311
nvme_disable_ctrl(struct nvme_dev * dev)312 static int nvme_disable_ctrl(struct nvme_dev *dev)
313 {
314 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
315 dev->ctrl_config &= ~NVME_CC_ENABLE;
316 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
317
318 return nvme_wait_ready(dev, false);
319 }
320
nvme_free_queue(struct nvme_queue * nvmeq)321 static void nvme_free_queue(struct nvme_queue *nvmeq)
322 {
323 free((void *)nvmeq->cqes);
324 free(nvmeq->sq_cmds);
325 free(nvmeq);
326 }
327
nvme_free_queues(struct nvme_dev * dev,int lowest)328 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
329 {
330 int i;
331
332 for (i = dev->queue_count - 1; i >= lowest; i--) {
333 struct nvme_queue *nvmeq = dev->queues[i];
334 dev->queue_count--;
335 dev->queues[i] = NULL;
336 nvme_free_queue(nvmeq);
337 }
338 }
339
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)340 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
341 {
342 struct nvme_dev *dev = nvmeq->dev;
343
344 nvmeq->sq_tail = 0;
345 nvmeq->cq_head = 0;
346 nvmeq->cq_phase = 1;
347 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
348 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
349 flush_dcache_range((ulong)nvmeq->cqes,
350 (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
351 dev->online_queues++;
352 }
353
nvme_configure_admin_queue(struct nvme_dev * dev)354 static int nvme_configure_admin_queue(struct nvme_dev *dev)
355 {
356 int result;
357 u32 aqa;
358 u64 cap = dev->cap;
359 struct nvme_queue *nvmeq;
360 /* most architectures use 4KB as the page size */
361 unsigned page_shift = 12;
362 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
363 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
364
365 if (page_shift < dev_page_min) {
366 debug("Device minimum page size (%u) too large for host (%u)\n",
367 1 << dev_page_min, 1 << page_shift);
368 return -ENODEV;
369 }
370
371 if (page_shift > dev_page_max) {
372 debug("Device maximum page size (%u) smaller than host (%u)\n",
373 1 << dev_page_max, 1 << page_shift);
374 page_shift = dev_page_max;
375 }
376
377 result = nvme_disable_ctrl(dev);
378 if (result < 0)
379 return result;
380
381 nvmeq = dev->queues[NVME_ADMIN_Q];
382 if (!nvmeq) {
383 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
384 if (!nvmeq)
385 return -ENOMEM;
386 }
387
388 aqa = nvmeq->q_depth - 1;
389 aqa |= aqa << 16;
390 aqa |= aqa << 16;
391
392 dev->page_size = 1 << page_shift;
393
394 dev->ctrl_config = NVME_CC_CSS_NVM;
395 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
396 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
397 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
398
399 writel(aqa, &dev->bar->aqa);
400 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
401 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
402
403 result = nvme_enable_ctrl(dev);
404 if (result)
405 goto free_nvmeq;
406
407 nvmeq->cq_vector = 0;
408
409 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
410
411 return result;
412
413 free_nvmeq:
414 nvme_free_queues(dev, 0);
415
416 return result;
417 }
418
nvme_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)419 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
420 struct nvme_queue *nvmeq)
421 {
422 struct nvme_command c;
423 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
424
425 memset(&c, 0, sizeof(c));
426 c.create_cq.opcode = nvme_admin_create_cq;
427 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
428 c.create_cq.cqid = cpu_to_le16(qid);
429 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
430 c.create_cq.cq_flags = cpu_to_le16(flags);
431 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
432
433 return nvme_submit_admin_cmd(dev, &c, NULL);
434 }
435
nvme_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)436 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
437 struct nvme_queue *nvmeq)
438 {
439 struct nvme_command c;
440 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
441
442 memset(&c, 0, sizeof(c));
443 c.create_sq.opcode = nvme_admin_create_sq;
444 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
445 c.create_sq.sqid = cpu_to_le16(qid);
446 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
447 c.create_sq.sq_flags = cpu_to_le16(flags);
448 c.create_sq.cqid = cpu_to_le16(qid);
449
450 return nvme_submit_admin_cmd(dev, &c, NULL);
451 }
452
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)453 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
454 unsigned cns, dma_addr_t dma_addr)
455 {
456 struct nvme_command c;
457 u32 page_size = dev->page_size;
458 int offset = dma_addr & (page_size - 1);
459 int length = sizeof(struct nvme_id_ctrl);
460 int ret;
461
462 memset(&c, 0, sizeof(c));
463 c.identify.opcode = nvme_admin_identify;
464 c.identify.nsid = cpu_to_le32(nsid);
465 c.identify.prp1 = cpu_to_le64(dma_addr);
466
467 length -= (page_size - offset);
468 if (length <= 0) {
469 c.identify.prp2 = 0;
470 } else {
471 dma_addr += (page_size - offset);
472 c.identify.prp2 = cpu_to_le64(dma_addr);
473 }
474
475 c.identify.cns = cpu_to_le32(cns);
476
477 invalidate_dcache_range(dma_addr,
478 dma_addr + sizeof(struct nvme_id_ctrl));
479
480 ret = nvme_submit_admin_cmd(dev, &c, NULL);
481 if (!ret)
482 invalidate_dcache_range(dma_addr,
483 dma_addr + sizeof(struct nvme_id_ctrl));
484
485 return ret;
486 }
487
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)488 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
489 dma_addr_t dma_addr, u32 *result)
490 {
491 struct nvme_command c;
492 int ret;
493
494 memset(&c, 0, sizeof(c));
495 c.features.opcode = nvme_admin_get_features;
496 c.features.nsid = cpu_to_le32(nsid);
497 c.features.prp1 = cpu_to_le64(dma_addr);
498 c.features.fid = cpu_to_le32(fid);
499
500 ret = nvme_submit_admin_cmd(dev, &c, result);
501
502 /*
503 * TODO: Add some cache invalidation when a DMA buffer is involved
504 * in the request, here and before the command gets submitted. The
505 * buffer size varies by feature, also some features use a different
506 * field in the command packet to hold the buffer address.
507 * Section 5.21.1 (Set Features command) in the NVMe specification
508 * details the buffer requirements for each feature.
509 *
510 * At the moment there is no user of this function.
511 */
512
513 return ret;
514 }
515
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)516 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
517 dma_addr_t dma_addr, u32 *result)
518 {
519 struct nvme_command c;
520
521 memset(&c, 0, sizeof(c));
522 c.features.opcode = nvme_admin_set_features;
523 c.features.prp1 = cpu_to_le64(dma_addr);
524 c.features.fid = cpu_to_le32(fid);
525 c.features.dword11 = cpu_to_le32(dword11);
526
527 /*
528 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
529 * involved in the request. The buffer size varies by feature, also
530 * some features use a different field in the command packet to hold
531 * the buffer address. Section 5.21.1 (Set Features command) in the
532 * NVMe specification details the buffer requirements for each
533 * feature.
534 * At the moment the only user of this function is not using
535 * any DMA buffer at all.
536 */
537
538 return nvme_submit_admin_cmd(dev, &c, result);
539 }
540
nvme_create_queue(struct nvme_queue * nvmeq,int qid)541 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
542 {
543 struct nvme_dev *dev = nvmeq->dev;
544 int result;
545
546 nvmeq->cq_vector = qid - 1;
547 result = nvme_alloc_cq(dev, qid, nvmeq);
548 if (result < 0)
549 goto release_cq;
550
551 result = nvme_alloc_sq(dev, qid, nvmeq);
552 if (result < 0)
553 goto release_sq;
554
555 nvme_init_queue(nvmeq, qid);
556
557 return result;
558
559 release_sq:
560 nvme_delete_sq(dev, qid);
561 release_cq:
562 nvme_delete_cq(dev, qid);
563
564 return result;
565 }
566
nvme_set_queue_count(struct nvme_dev * dev,int count)567 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
568 {
569 int status;
570 u32 result;
571 u32 q_count = (count - 1) | ((count - 1) << 16);
572
573 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
574 q_count, 0, &result);
575
576 if (status < 0)
577 return status;
578 if (status > 1)
579 return 0;
580
581 return min(result & 0xffff, result >> 16) + 1;
582 }
583
nvme_create_io_queues(struct nvme_dev * dev)584 static void nvme_create_io_queues(struct nvme_dev *dev)
585 {
586 unsigned int i;
587
588 for (i = dev->queue_count; i <= dev->max_qid; i++)
589 if (!nvme_alloc_queue(dev, i, dev->q_depth))
590 break;
591
592 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
593 if (nvme_create_queue(dev->queues[i], i))
594 break;
595 }
596
nvme_setup_io_queues(struct nvme_dev * dev)597 static int nvme_setup_io_queues(struct nvme_dev *dev)
598 {
599 int nr_io_queues;
600 int result;
601
602 nr_io_queues = 1;
603 result = nvme_set_queue_count(dev, nr_io_queues);
604 if (result <= 0)
605 return result;
606
607 dev->max_qid = nr_io_queues;
608
609 /* Free previously allocated queues */
610 nvme_free_queues(dev, nr_io_queues + 1);
611 nvme_create_io_queues(dev);
612
613 return 0;
614 }
615
nvme_get_info_from_identify(struct nvme_dev * dev)616 static int nvme_get_info_from_identify(struct nvme_dev *dev)
617 {
618 struct nvme_id_ctrl *ctrl;
619 int ret;
620 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
621
622 ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
623 if (!ctrl)
624 return -ENOMEM;
625
626 ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
627 if (ret) {
628 free(ctrl);
629 return -EIO;
630 }
631
632 dev->nn = le32_to_cpu(ctrl->nn);
633 dev->vwc = ctrl->vwc;
634 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
635 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
636 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
637 if (ctrl->mdts)
638 dev->max_transfer_shift = (ctrl->mdts + shift);
639 else {
640 /*
641 * Maximum Data Transfer Size (MDTS) field indicates the maximum
642 * data transfer size between the host and the controller. The
643 * host should not submit a command that exceeds this transfer
644 * size. The value is in units of the minimum memory page size
645 * and is reported as a power of two (2^n).
646 *
647 * The spec also says: a value of 0h indicates no restrictions
648 * on transfer size. But in nvme_blk_read/write() below we have
649 * the following algorithm for maximum number of logic blocks
650 * per transfer:
651 *
652 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
653 *
654 * In order for lbas not to overflow, the maximum number is 15
655 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
656 * Let's use 20 which provides 1MB size.
657 */
658 dev->max_transfer_shift = 20;
659 }
660
661 free(ctrl);
662 return 0;
663 }
664
nvme_get_namespace_id(struct udevice * udev,u32 * ns_id,u8 * eui64)665 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
666 {
667 struct nvme_ns *ns = dev_get_priv(udev);
668
669 if (ns_id)
670 *ns_id = ns->ns_id;
671 if (eui64)
672 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
673
674 return 0;
675 }
676
nvme_scan_namespace(void)677 int nvme_scan_namespace(void)
678 {
679 struct uclass *uc;
680 struct udevice *dev;
681 int ret;
682
683 ret = uclass_get(UCLASS_NVME, &uc);
684 if (ret)
685 return ret;
686
687 uclass_foreach_dev(dev, uc) {
688 ret = device_probe(dev);
689 if (ret)
690 return ret;
691 }
692
693 return 0;
694 }
695
nvme_blk_probe(struct udevice * udev)696 static int nvme_blk_probe(struct udevice *udev)
697 {
698 struct nvme_dev *ndev = dev_get_priv(udev->parent);
699 struct blk_desc *desc = dev_get_uclass_plat(udev);
700 struct nvme_ns *ns = dev_get_priv(udev);
701 u8 flbas;
702 struct pci_child_plat *pplat;
703 struct nvme_id_ns *id;
704
705 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
706 if (!id)
707 return -ENOMEM;
708
709 memset(ns, 0, sizeof(*ns));
710 ns->dev = ndev;
711 /* extract the namespace id from the block device name */
712 ns->ns_id = trailing_strtol(udev->name) + 1;
713 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
714 free(id);
715 return -EIO;
716 }
717
718 memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
719 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
720 ns->flbas = flbas;
721 ns->lba_shift = id->lbaf[flbas].ds;
722 ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
723 ns->mode_select_block_len = 1 << ns->lba_shift;
724 list_add(&ns->list, &ndev->namespaces);
725
726 desc->lba = ns->mode_select_num_blocks;
727 desc->log2blksz = ns->lba_shift;
728 desc->blksz = 1 << ns->lba_shift;
729 desc->bdev = udev;
730 pplat = dev_get_parent_plat(udev->parent);
731 sprintf(desc->vendor, "0x%.4x", pplat->vendor);
732 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
733 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
734
735 free(id);
736 return 0;
737 }
738
nvme_blk_rw(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer,bool read)739 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
740 lbaint_t blkcnt, void *buffer, bool read)
741 {
742 struct nvme_ns *ns = dev_get_priv(udev);
743 struct nvme_dev *dev = ns->dev;
744 struct nvme_command c;
745 struct blk_desc *desc = dev_get_uclass_plat(udev);
746 int status;
747 u64 prp2;
748 u64 total_len = blkcnt << desc->log2blksz;
749 u64 temp_len = total_len;
750
751 u64 slba = blknr;
752 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
753 u64 total_lbas = blkcnt;
754
755 flush_dcache_range((unsigned long)buffer,
756 (unsigned long)buffer + total_len);
757
758 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
759 c.rw.flags = 0;
760 c.rw.nsid = cpu_to_le32(ns->ns_id);
761 c.rw.control = 0;
762 c.rw.dsmgmt = 0;
763 c.rw.reftag = 0;
764 c.rw.apptag = 0;
765 c.rw.appmask = 0;
766 c.rw.metadata = 0;
767
768 while (total_lbas) {
769 if (total_lbas < lbas) {
770 lbas = (u16)total_lbas;
771 total_lbas = 0;
772 } else {
773 total_lbas -= lbas;
774 }
775
776 if (nvme_setup_prps(dev, &prp2,
777 lbas << ns->lba_shift, (ulong)buffer))
778 return -EIO;
779 c.rw.slba = cpu_to_le64(slba);
780 slba += lbas;
781 c.rw.length = cpu_to_le16(lbas - 1);
782 c.rw.prp1 = cpu_to_le64((ulong)buffer);
783 c.rw.prp2 = cpu_to_le64(prp2);
784 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
785 &c, NULL, IO_TIMEOUT);
786 if (status)
787 break;
788 temp_len -= (u32)lbas << ns->lba_shift;
789 buffer += lbas << ns->lba_shift;
790 }
791
792 if (read)
793 invalidate_dcache_range((unsigned long)buffer,
794 (unsigned long)buffer + total_len);
795
796 return (total_len - temp_len) >> desc->log2blksz;
797 }
798
nvme_blk_read(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer)799 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
800 lbaint_t blkcnt, void *buffer)
801 {
802 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
803 }
804
nvme_blk_write(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,const void * buffer)805 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
806 lbaint_t blkcnt, const void *buffer)
807 {
808 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
809 }
810
811 static const struct blk_ops nvme_blk_ops = {
812 .read = nvme_blk_read,
813 .write = nvme_blk_write,
814 };
815
816 U_BOOT_DRIVER(nvme_blk) = {
817 .name = "nvme-blk",
818 .id = UCLASS_BLK,
819 .probe = nvme_blk_probe,
820 .ops = &nvme_blk_ops,
821 .priv_auto = sizeof(struct nvme_ns),
822 };
823
nvme_bind(struct udevice * udev)824 static int nvme_bind(struct udevice *udev)
825 {
826 static int ndev_num;
827 char name[20];
828
829 sprintf(name, "nvme#%d", ndev_num++);
830
831 return device_set_name(udev, name);
832 }
833
nvme_probe(struct udevice * udev)834 static int nvme_probe(struct udevice *udev)
835 {
836 int ret;
837 struct nvme_dev *ndev = dev_get_priv(udev);
838
839 ndev->instance = trailing_strtol(udev->name);
840
841 INIT_LIST_HEAD(&ndev->namespaces);
842 ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
843 PCI_REGION_MEM);
844 if (readl(&ndev->bar->csts) == -1) {
845 ret = -ENODEV;
846 printf("Error: %s: Out of memory!\n", udev->name);
847 goto free_nvme;
848 }
849
850 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
851 if (!ndev->queues) {
852 ret = -ENOMEM;
853 printf("Error: %s: Out of memory!\n", udev->name);
854 goto free_nvme;
855 }
856 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
857
858 ndev->cap = nvme_readq(&ndev->bar->cap);
859 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
860 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
861 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
862
863 ret = nvme_configure_admin_queue(ndev);
864 if (ret)
865 goto free_queue;
866
867 /* Allocate after the page size is known */
868 ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
869 if (!ndev->prp_pool) {
870 ret = -ENOMEM;
871 printf("Error: %s: Out of memory!\n", udev->name);
872 goto free_nvme;
873 }
874 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
875
876 ret = nvme_setup_io_queues(ndev);
877 if (ret)
878 goto free_queue;
879
880 nvme_get_info_from_identify(ndev);
881
882 return 0;
883
884 free_queue:
885 free((void *)ndev->queues);
886 free_nvme:
887 return ret;
888 }
889
890 U_BOOT_DRIVER(nvme) = {
891 .name = "nvme",
892 .id = UCLASS_NVME,
893 .bind = nvme_bind,
894 .probe = nvme_probe,
895 .priv_auto = sizeof(struct nvme_dev),
896 };
897
898 struct pci_device_id nvme_supported[] = {
899 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
900 {}
901 };
902
903 U_BOOT_PCI_DEVICE(nvme, nvme_supported);
904