1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * Freescale QuadSPI driver.
5  *
6  * Copyright (C) 2013 Freescale Semiconductor, Inc.
7  * Copyright (C) 2018 Bootlin
8  * Copyright (C) 2018 exceet electronics GmbH
9  * Copyright (C) 2018 Kontron Electronics GmbH
10  * Copyright 2019-2020 NXP
11  *
12  * This driver is a ported version of Linux Freescale QSPI driver taken from
13  * v5.5-rc1 tag having following information.
14  *
15  * Transition to SPI MEM interface:
16  * Authors:
17  *     Boris Brezillon <bbrezillon@kernel.org>
18  *     Frieder Schrempf <frieder.schrempf@kontron.de>
19  *     Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
20  *     Suresh Gupta <suresh.gupta@nxp.com>
21  *
22  * Based on the original fsl-quadspi.c spi-nor driver.
23  * Transition to spi-mem in spi-fsl-qspi.c
24  */
25 
26 #include <common.h>
27 #include <dm.h>
28 #include <dm/device_compat.h>
29 #include <log.h>
30 #include <spi.h>
31 #include <spi-mem.h>
32 #include <asm/global_data.h>
33 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <linux/libfdt.h>
36 #include <linux/sizes.h>
37 #include <linux/iopoll.h>
38 #include <linux/iopoll.h>
39 #include <linux/sizes.h>
40 #include <linux/err.h>
41 #include <asm/io.h>
42 
43 DECLARE_GLOBAL_DATA_PTR;
44 
45 /*
46  * The driver only uses one single LUT entry, that is updated on
47  * each call of exec_op(). Index 0 is preset at boot with a basic
48  * read operation, so let's use the last entry (15).
49  */
50 #define	SEQID_LUT			15
51 #define	SEQID_LUT_AHB		14
52 
53 /* Registers used by the driver */
54 #define QUADSPI_MCR			0x00
55 #define QUADSPI_MCR_RESERVED_MASK	GENMASK(19, 16)
56 #define QUADSPI_MCR_MDIS_MASK		BIT(14)
57 #define QUADSPI_MCR_CLR_TXF_MASK	BIT(11)
58 #define QUADSPI_MCR_CLR_RXF_MASK	BIT(10)
59 #define QUADSPI_MCR_DDR_EN_MASK		BIT(7)
60 #define QUADSPI_MCR_END_CFG_MASK	GENMASK(3, 2)
61 #define QUADSPI_MCR_SWRSTHD_MASK	BIT(1)
62 #define QUADSPI_MCR_SWRSTSD_MASK	BIT(0)
63 
64 #define QUADSPI_IPCR			0x08
65 #define QUADSPI_IPCR_SEQID(x)		((x) << 24)
66 #define QUADSPI_FLSHCR			0x0c
67 #define QUADSPI_FLSHCR_TCSS_MASK	GENMASK(3, 0)
68 #define QUADSPI_FLSHCR_TCSH_MASK	GENMASK(11, 8)
69 #define QUADSPI_FLSHCR_TDH_MASK		GENMASK(17, 16)
70 
71 #define QUADSPI_BUF3CR			0x1c
72 #define QUADSPI_BUF3CR_ALLMST_MASK	BIT(31)
73 #define QUADSPI_BUF3CR_ADATSZ(x)	((x) << 8)
74 #define QUADSPI_BUF3CR_ADATSZ_MASK	GENMASK(15, 8)
75 
76 #define QUADSPI_BFGENCR			0x20
77 #define QUADSPI_BFGENCR_SEQID(x)	((x) << 12)
78 
79 #define QUADSPI_BUF0IND			0x30
80 #define QUADSPI_BUF1IND			0x34
81 #define QUADSPI_BUF2IND			0x38
82 #define QUADSPI_SFAR			0x100
83 
84 #define QUADSPI_SMPR			0x108
85 #define QUADSPI_SMPR_DDRSMP_MASK	GENMASK(18, 16)
86 #define QUADSPI_SMPR_FSDLY_MASK		BIT(6)
87 #define QUADSPI_SMPR_FSPHS_MASK		BIT(5)
88 #define QUADSPI_SMPR_HSENA_MASK		BIT(0)
89 
90 #define QUADSPI_RBCT			0x110
91 #define QUADSPI_RBCT_WMRK_MASK		GENMASK(4, 0)
92 #define QUADSPI_RBCT_RXBRD_USEIPS	BIT(8)
93 
94 #define QUADSPI_TBDR			0x154
95 
96 #define QUADSPI_SR			0x15c
97 #define QUADSPI_SR_IP_ACC_MASK		BIT(1)
98 #define QUADSPI_SR_AHB_ACC_MASK		BIT(2)
99 
100 #define QUADSPI_FR			0x160
101 #define QUADSPI_FR_TFF_MASK		BIT(0)
102 
103 #define QUADSPI_RSER			0x164
104 #define QUADSPI_RSER_TFIE		BIT(0)
105 
106 #define QUADSPI_SPTRCLR			0x16c
107 #define QUADSPI_SPTRCLR_IPPTRC		BIT(8)
108 #define QUADSPI_SPTRCLR_BFPTRC		BIT(0)
109 
110 #define QUADSPI_SFA1AD			0x180
111 #define QUADSPI_SFA2AD			0x184
112 #define QUADSPI_SFB1AD			0x188
113 #define QUADSPI_SFB2AD			0x18c
114 #define QUADSPI_RBDR(x)			(0x200 + ((x) * 4))
115 
116 #define QUADSPI_LUTKEY			0x300
117 #define QUADSPI_LUTKEY_VALUE		0x5AF05AF0
118 
119 #define QUADSPI_LCKCR			0x304
120 #define QUADSPI_LCKER_LOCK		BIT(0)
121 #define QUADSPI_LCKER_UNLOCK		BIT(1)
122 
123 #define QUADSPI_LUT_BASE		0x310
124 #define QUADSPI_LUT_OFFSET		(SEQID_LUT * 4 * 4)
125 #define QUADSPI_LUT_REG(idx) \
126 	(QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
127 
128 #define QUADSPI_AHB_LUT_OFFSET		(SEQID_LUT_AHB * 4 * 4)
129 #define QUADSPI_AHB_LUT_REG(idx) \
130 	(QUADSPI_LUT_BASE + QUADSPI_AHB_LUT_OFFSET + (idx) * 4)
131 
132 /* Instruction set for the LUT register */
133 #define LUT_STOP		0
134 #define LUT_CMD			1
135 #define LUT_ADDR		2
136 #define LUT_DUMMY		3
137 #define LUT_MODE		4
138 #define LUT_MODE2		5
139 #define LUT_MODE4		6
140 #define LUT_FSL_READ		7
141 #define LUT_FSL_WRITE		8
142 #define LUT_JMP_ON_CS		9
143 #define LUT_ADDR_DDR		10
144 #define LUT_MODE_DDR		11
145 #define LUT_MODE2_DDR		12
146 #define LUT_MODE4_DDR		13
147 #define LUT_FSL_READ_DDR	14
148 #define LUT_FSL_WRITE_DDR	15
149 #define LUT_DATA_LEARN		16
150 
151 /*
152  * The PAD definitions for LUT register.
153  *
154  * The pad stands for the number of IO lines [0:3].
155  * For example, the quad read needs four IO lines,
156  * so you should use LUT_PAD(4).
157  */
158 #define LUT_PAD(x) (fls(x) - 1)
159 
160 /*
161  * Macro for constructing the LUT entries with the following
162  * register layout:
163  *
164  *  ---------------------------------------------------
165  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
166  *  ---------------------------------------------------
167  */
168 #define LUT_DEF(idx, ins, pad, opr)					\
169 	((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
170 
171 /* Controller needs driver to swap endianness */
172 #define QUADSPI_QUIRK_SWAP_ENDIAN	BIT(0)
173 
174 /* Controller needs 4x internal clock */
175 #define QUADSPI_QUIRK_4X_INT_CLK	BIT(1)
176 
177 /*
178  * TKT253890, the controller needs the driver to fill the txfifo with
179  * 16 bytes at least to trigger a data transfer, even though the extra
180  * data won't be transferred.
181  */
182 #define QUADSPI_QUIRK_TKT253890		BIT(2)
183 
184 /* TKT245618, the controller cannot wake up from wait mode */
185 #define QUADSPI_QUIRK_TKT245618		BIT(3)
186 
187 /*
188  * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
189  * internally. No need to add it when setting SFXXAD and SFAR registers
190  */
191 #define QUADSPI_QUIRK_BASE_INTERNAL	BIT(4)
192 
193 /*
194  * Controller uses TDH bits in register QUADSPI_FLSHCR.
195  * They need to be set in accordance with the DDR/SDR mode.
196  */
197 #define QUADSPI_QUIRK_USE_TDH_SETTING	BIT(5)
198 
199 /*
200  * Controller only has Two CS on flash A, no flash B port
201  */
202 #define QUADSPI_QUIRK_SINGLE_BUS		BIT(6)
203 
204 struct fsl_qspi_devtype_data {
205 	unsigned int rxfifo;
206 	unsigned int txfifo;
207 	unsigned int ahb_buf_size;
208 	unsigned int quirks;
209 	bool little_endian;
210 };
211 
212 static const struct fsl_qspi_devtype_data vybrid_data = {
213 	.rxfifo = SZ_128,
214 	.txfifo = SZ_64,
215 	.ahb_buf_size = SZ_1K,
216 	.quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
217 	.little_endian = true,
218 };
219 
220 static const struct fsl_qspi_devtype_data imx6sx_data = {
221 	.rxfifo = SZ_128,
222 	.txfifo = SZ_512,
223 	.ahb_buf_size = SZ_1K,
224 	.quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
225 	.little_endian = true,
226 };
227 
228 static const struct fsl_qspi_devtype_data imx7d_data = {
229 	.rxfifo = SZ_128,
230 	.txfifo = SZ_512,
231 	.ahb_buf_size = SZ_1K,
232 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
233 		  QUADSPI_QUIRK_USE_TDH_SETTING,
234 	.little_endian = true,
235 };
236 
237 static const struct fsl_qspi_devtype_data imx6ul_data = {
238 	.rxfifo = SZ_128,
239 	.txfifo = SZ_512,
240 	.ahb_buf_size = SZ_1K,
241 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
242 		  QUADSPI_QUIRK_USE_TDH_SETTING,
243 	.little_endian = true,
244 };
245 
246 static const struct fsl_qspi_devtype_data imx7ulp_data = {
247 	.rxfifo = SZ_64,
248 	.txfifo = SZ_64,
249 	.ahb_buf_size = SZ_128,
250 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
251 		  QUADSPI_QUIRK_USE_TDH_SETTING | QUADSPI_QUIRK_SINGLE_BUS,
252 	.little_endian = true,
253 };
254 
255 static const struct fsl_qspi_devtype_data ls1021a_data = {
256 	.rxfifo = SZ_128,
257 	.txfifo = SZ_64,
258 	.ahb_buf_size = SZ_1K,
259 	.quirks = 0,
260 	.little_endian = false,
261 };
262 
263 static const struct fsl_qspi_devtype_data ls2080a_data = {
264 	.rxfifo = SZ_128,
265 	.txfifo = SZ_64,
266 	.ahb_buf_size = SZ_1K,
267 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
268 	.little_endian = true,
269 };
270 
271 struct fsl_qspi {
272 	struct udevice *dev;
273 	void __iomem *iobase;
274 	void __iomem *ahb_addr;
275 	u32 memmap_phy;
276 	u32 memmap_size;
277 	const struct fsl_qspi_devtype_data *devtype_data;
278 	int selected;
279 };
280 
needs_swap_endian(struct fsl_qspi * q)281 static inline int needs_swap_endian(struct fsl_qspi *q)
282 {
283 	return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
284 }
285 
needs_4x_clock(struct fsl_qspi * q)286 static inline int needs_4x_clock(struct fsl_qspi *q)
287 {
288 	return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
289 }
290 
needs_fill_txfifo(struct fsl_qspi * q)291 static inline int needs_fill_txfifo(struct fsl_qspi *q)
292 {
293 	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
294 }
295 
needs_wakeup_wait_mode(struct fsl_qspi * q)296 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
297 {
298 	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
299 }
300 
needs_amba_base_offset(struct fsl_qspi * q)301 static inline int needs_amba_base_offset(struct fsl_qspi *q)
302 {
303 	return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
304 }
305 
needs_tdh_setting(struct fsl_qspi * q)306 static inline int needs_tdh_setting(struct fsl_qspi *q)
307 {
308 	return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
309 }
310 
needs_single_bus(struct fsl_qspi * q)311 static inline int needs_single_bus(struct fsl_qspi *q)
312 {
313 	return q->devtype_data->quirks & QUADSPI_QUIRK_SINGLE_BUS;
314 }
315 
316 /*
317  * An IC bug makes it necessary to rearrange the 32-bit data.
318  * Later chips, such as IMX6SLX, have fixed this bug.
319  */
fsl_qspi_endian_xchg(struct fsl_qspi * q,u32 a)320 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
321 {
322 	return needs_swap_endian(q) ? __swab32(a) : a;
323 }
324 
325 /*
326  * R/W functions for big- or little-endian registers:
327  * The QSPI controller's endianness is independent of
328  * the CPU core's endianness. So far, although the CPU
329  * core is little-endian the QSPI controller can use
330  * big-endian or little-endian.
331  */
qspi_writel(struct fsl_qspi * q,u32 val,void __iomem * addr)332 static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
333 {
334 	if (q->devtype_data->little_endian)
335 		out_le32(addr, val);
336 	else
337 		out_be32(addr, val);
338 }
339 
qspi_readl(struct fsl_qspi * q,void __iomem * addr)340 static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
341 {
342 	if (q->devtype_data->little_endian)
343 		return in_le32(addr);
344 
345 	return in_be32(addr);
346 }
347 
fsl_qspi_check_buswidth(struct fsl_qspi * q,u8 width)348 static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
349 {
350 	switch (width) {
351 	case 1:
352 	case 2:
353 	case 4:
354 		return 0;
355 	}
356 
357 	return -ENOTSUPP;
358 }
359 
fsl_qspi_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)360 static bool fsl_qspi_supports_op(struct spi_slave *slave,
361 				 const struct spi_mem_op *op)
362 {
363 	struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
364 	int ret;
365 
366 	ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
367 
368 	if (op->addr.nbytes)
369 		ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
370 
371 	if (op->dummy.nbytes)
372 		ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
373 
374 	if (op->data.nbytes)
375 		ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
376 
377 	if (ret)
378 		return false;
379 
380 	/*
381 	 * The number of instructions needed for the op, needs
382 	 * to fit into a single LUT entry.
383 	 */
384 	if (op->addr.nbytes +
385 	   (op->dummy.nbytes ? 1 : 0) +
386 	   (op->data.nbytes ? 1 : 0) > 6)
387 		return false;
388 
389 	/* Max 64 dummy clock cycles supported */
390 	if (op->dummy.nbytes &&
391 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
392 		return false;
393 
394 	/* Max data length, check controller limits and alignment */
395 	if (op->data.dir == SPI_MEM_DATA_IN &&
396 	    (op->data.nbytes > q->devtype_data->ahb_buf_size ||
397 	     (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
398 	      !IS_ALIGNED(op->data.nbytes, 8))))
399 		return false;
400 
401 	if (op->data.dir == SPI_MEM_DATA_OUT &&
402 	    op->data.nbytes > q->devtype_data->txfifo)
403 		return false;
404 
405 	return spi_mem_default_supports_op(slave, op);
406 }
407 
fsl_qspi_prepare_lut(struct fsl_qspi * q,const struct spi_mem_op * op)408 static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
409 				 const struct spi_mem_op *op)
410 {
411 	void __iomem *base = q->iobase;
412 	u32 lutval[4] = {};
413 	int lutidx = 1, i;
414 
415 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
416 			     op->cmd.opcode);
417 
418 	if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
419 		if (op->addr.nbytes) {
420 			lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
421 						      LUT_PAD(op->addr.buswidth),
422 						      (op->addr.nbytes == 4) ? 0x20 : 0x18);
423 			lutidx++;
424 		}
425 	} else {
426 		/*
427 		 * For some unknown reason, using LUT_ADDR doesn't work in some
428 		 * cases (at least with only one byte long addresses), so
429 		 * let's use LUT_MODE to write the address bytes one by one
430 		 */
431 		for (i = 0; i < op->addr.nbytes; i++) {
432 			u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
433 
434 			lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
435 						      LUT_PAD(op->addr.buswidth),
436 						      addrbyte);
437 			lutidx++;
438 		}
439 	}
440 
441 	if (op->dummy.nbytes) {
442 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
443 					      LUT_PAD(op->dummy.buswidth),
444 					      op->dummy.nbytes * 8 /
445 					      op->dummy.buswidth);
446 		lutidx++;
447 	}
448 
449 	if (op->data.nbytes) {
450 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
451 					      op->data.dir == SPI_MEM_DATA_IN ?
452 					      LUT_FSL_READ : LUT_FSL_WRITE,
453 					      LUT_PAD(op->data.buswidth),
454 					      0);
455 		lutidx++;
456 	}
457 
458 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
459 
460 	/* unlock LUT */
461 	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
462 	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
463 
464 	dev_dbg(q->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
465 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
466 
467 	/* fill LUT */
468 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
469 		qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
470 
471 	if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
472 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN &&
473 		    op->addr.nbytes) {
474 			for (i = 0; i < ARRAY_SIZE(lutval); i++)
475 				qspi_writel(q, lutval[i], base + QUADSPI_AHB_LUT_REG(i));
476 		}
477 	}
478 
479 	/* lock LUT */
480 	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
481 	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
482 }
483 
484 /*
485  * If we have changed the content of the flash by writing or erasing, or if we
486  * read from flash with a different offset into the page buffer, we need to
487  * invalidate the AHB buffer. If we do not do so, we may read out the wrong
488  * data. The spec tells us reset the AHB domain and Serial Flash domain at
489  * the same time.
490  */
fsl_qspi_invalidate(struct fsl_qspi * q)491 static void fsl_qspi_invalidate(struct fsl_qspi *q)
492 {
493 	u32 reg;
494 
495 	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
496 	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
497 	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
498 
499 	/*
500 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
501 	 * Delay 1 us is enough.
502 	 */
503 	udelay(1);
504 
505 	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
506 	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
507 }
508 
fsl_qspi_select_mem(struct fsl_qspi * q,struct spi_slave * slave)509 static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_slave *slave)
510 {
511 	struct dm_spi_slave_plat *plat =
512 		dev_get_parent_plat(slave->dev);
513 
514 	if (q->selected == plat->cs)
515 		return;
516 
517 	q->selected = plat->cs;
518 	fsl_qspi_invalidate(q);
519 }
520 
fsl_qspi_memsize_per_cs(struct fsl_qspi * q)521 static u32 fsl_qspi_memsize_per_cs(struct fsl_qspi *q)
522 {
523 	if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
524 		if (needs_single_bus(q))
525 			return q->memmap_size / 2;
526 		else
527 			return q->memmap_size / 4;
528 	} else {
529 		return ALIGN(q->devtype_data->ahb_buf_size, 0x400);
530 	}
531 }
532 
fsl_qspi_read_ahb(struct fsl_qspi * q,const struct spi_mem_op * op)533 static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
534 {
535 	void __iomem *ahb_read_addr = q->ahb_addr;
536 
537 	if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
538 		if (op->addr.nbytes)
539 			ahb_read_addr += op->addr.val;
540 	}
541 
542 	memcpy_fromio(op->data.buf.in,
543 		      ahb_read_addr + q->selected * fsl_qspi_memsize_per_cs(q),
544 		      op->data.nbytes);
545 }
546 
fsl_qspi_fill_txfifo(struct fsl_qspi * q,const struct spi_mem_op * op)547 static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
548 				 const struct spi_mem_op *op)
549 {
550 	void __iomem *base = q->iobase;
551 	int i;
552 	u32 val;
553 
554 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
555 		memcpy(&val, op->data.buf.out + i, 4);
556 		val = fsl_qspi_endian_xchg(q, val);
557 		qspi_writel(q, val, base + QUADSPI_TBDR);
558 	}
559 
560 	if (i < op->data.nbytes) {
561 		memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
562 		val = fsl_qspi_endian_xchg(q, val);
563 		qspi_writel(q, val, base + QUADSPI_TBDR);
564 	}
565 
566 	if (needs_fill_txfifo(q)) {
567 		for (i = op->data.nbytes; i < 16; i += 4)
568 			qspi_writel(q, 0, base + QUADSPI_TBDR);
569 	}
570 }
571 
fsl_qspi_read_rxfifo(struct fsl_qspi * q,const struct spi_mem_op * op)572 static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
573 				 const struct spi_mem_op *op)
574 {
575 	void __iomem *base = q->iobase;
576 	int i;
577 	u8 *buf = op->data.buf.in;
578 	u32 val;
579 
580 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
581 		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
582 		val = fsl_qspi_endian_xchg(q, val);
583 		memcpy(buf + i, &val, 4);
584 	}
585 
586 	if (i < op->data.nbytes) {
587 		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
588 		val = fsl_qspi_endian_xchg(q, val);
589 		memcpy(buf + i, &val, op->data.nbytes - i);
590 	}
591 }
592 
fsl_qspi_readl_poll_tout(struct fsl_qspi * q,void __iomem * base,u32 mask,u32 delay_us,u32 timeout_us)593 static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
594 				    u32 mask, u32 delay_us, u32 timeout_us)
595 {
596 	u32 reg;
597 
598 	if (!q->devtype_data->little_endian)
599 		mask = (u32)cpu_to_be32(mask);
600 
601 	return readl_poll_timeout(base, reg, !(reg & mask), timeout_us);
602 }
603 
fsl_qspi_do_op(struct fsl_qspi * q,const struct spi_mem_op * op)604 static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
605 {
606 	void __iomem *base = q->iobase;
607 	int err = 0;
608 
609 	/*
610 	 * Always start the sequence at the same index since we update
611 	 * the LUT at each exec_op() call. And also specify the DATA
612 	 * length, since it's has not been specified in the LUT.
613 	 */
614 	qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
615 		    base + QUADSPI_IPCR);
616 
617 	/* wait for the controller being ready */
618 	err = fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR,
619 				       (QUADSPI_SR_IP_ACC_MASK |
620 					QUADSPI_SR_AHB_ACC_MASK),
621 					10, 1000);
622 
623 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
624 		fsl_qspi_read_rxfifo(q, op);
625 
626 	return err;
627 }
628 
fsl_qspi_exec_op(struct spi_slave * slave,const struct spi_mem_op * op)629 static int fsl_qspi_exec_op(struct spi_slave *slave,
630 			    const struct spi_mem_op *op)
631 {
632 	struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
633 	void __iomem *base = q->iobase;
634 	u32 addr_offset = 0;
635 	int err = 0;
636 
637 	/* wait for the controller being ready */
638 	fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
639 				 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
640 
641 	fsl_qspi_select_mem(q, slave);
642 
643 	if (needs_amba_base_offset(q))
644 		addr_offset = q->memmap_phy;
645 
646 	if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
647 		if (op->addr.nbytes)
648 			addr_offset += op->addr.val;
649 	}
650 
651 	qspi_writel(q,
652 		    q->selected * fsl_qspi_memsize_per_cs(q) + addr_offset,
653 		    base + QUADSPI_SFAR);
654 
655 	qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
656 		    QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
657 		    base + QUADSPI_MCR);
658 
659 	qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
660 		    base + QUADSPI_SPTRCLR);
661 
662 	fsl_qspi_prepare_lut(q, op);
663 
664 	/*
665 	 * If we have large chunks of data, we read them through the AHB bus
666 	 * by accessing the mapped memory. In all other cases we use
667 	 * IP commands to access the flash.
668 	 */
669 	if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
670 	    op->data.dir == SPI_MEM_DATA_IN) {
671 		fsl_qspi_read_ahb(q, op);
672 	} else {
673 		qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
674 			    QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
675 
676 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
677 			fsl_qspi_fill_txfifo(q, op);
678 
679 		err = fsl_qspi_do_op(q, op);
680 	}
681 
682 	/* Invalidate the data in the AHB buffer. */
683 	fsl_qspi_invalidate(q);
684 
685 	return err;
686 }
687 
fsl_qspi_adjust_op_size(struct spi_slave * slave,struct spi_mem_op * op)688 static int fsl_qspi_adjust_op_size(struct spi_slave *slave,
689 				   struct spi_mem_op *op)
690 {
691 	struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
692 
693 	if (op->data.dir == SPI_MEM_DATA_OUT) {
694 		if (op->data.nbytes > q->devtype_data->txfifo)
695 			op->data.nbytes = q->devtype_data->txfifo;
696 	} else {
697 		if (op->data.nbytes > q->devtype_data->ahb_buf_size)
698 			op->data.nbytes = q->devtype_data->ahb_buf_size;
699 		else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
700 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
701 	}
702 
703 	return 0;
704 }
705 
fsl_qspi_default_setup(struct fsl_qspi * q)706 static int fsl_qspi_default_setup(struct fsl_qspi *q)
707 {
708 	void __iomem *base = q->iobase;
709 	u32 reg, addr_offset = 0, memsize_cs;
710 
711 	/* Reset the module */
712 	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
713 		    base + QUADSPI_MCR);
714 	udelay(1);
715 
716 	/* Disable the module */
717 	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
718 		    base + QUADSPI_MCR);
719 
720 	/*
721 	 * Previous boot stages (BootROM, bootloader) might have used DDR
722 	 * mode and did not clear the TDH bits. As we currently use SDR mode
723 	 * only, clear the TDH bits if necessary.
724 	 */
725 	if (needs_tdh_setting(q))
726 		qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
727 			    ~QUADSPI_FLSHCR_TDH_MASK,
728 			    base + QUADSPI_FLSHCR);
729 
730 	reg = qspi_readl(q, base + QUADSPI_SMPR);
731 	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
732 			| QUADSPI_SMPR_FSPHS_MASK
733 			| QUADSPI_SMPR_HSENA_MASK
734 			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
735 
736 	/* We only use the buffer3 for AHB read */
737 	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
738 	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
739 	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
740 
741 	if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP))
742 		qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT_AHB),
743 			    q->iobase + QUADSPI_BFGENCR);
744 	else
745 		qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
746 			    q->iobase + QUADSPI_BFGENCR);
747 
748 	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
749 	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
750 		    QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
751 		    base + QUADSPI_BUF3CR);
752 
753 	if (needs_amba_base_offset(q))
754 		addr_offset = q->memmap_phy;
755 
756 	/*
757 	 * In HW there can be a maximum of four chips on two buses with
758 	 * two chip selects on each bus. We use four chip selects in SW
759 	 * to differentiate between the four chips.
760 	 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
761 	 * SFB2AD accordingly.
762 	 */
763 	memsize_cs = fsl_qspi_memsize_per_cs(q);
764 	qspi_writel(q, memsize_cs + addr_offset,
765 		    base + QUADSPI_SFA1AD);
766 	qspi_writel(q, memsize_cs * 2 + addr_offset,
767 		    base + QUADSPI_SFA2AD);
768 	if (!needs_single_bus(q)) {
769 		qspi_writel(q, memsize_cs * 3 + addr_offset,
770 			    base + QUADSPI_SFB1AD);
771 		qspi_writel(q, memsize_cs * 4 + addr_offset,
772 			    base + QUADSPI_SFB2AD);
773 	}
774 
775 	q->selected = -1;
776 
777 	/* Enable the module */
778 	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
779 		    base + QUADSPI_MCR);
780 	return 0;
781 }
782 
783 static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
784 	.adjust_op_size = fsl_qspi_adjust_op_size,
785 	.supports_op = fsl_qspi_supports_op,
786 	.exec_op = fsl_qspi_exec_op,
787 };
788 
fsl_qspi_probe(struct udevice * bus)789 static int fsl_qspi_probe(struct udevice *bus)
790 {
791 	struct dm_spi_bus *dm_bus = dev_get_uclass_priv(bus);
792 	struct fsl_qspi *q = dev_get_priv(bus);
793 	const void *blob = gd->fdt_blob;
794 	int node = dev_of_offset(bus);
795 	struct fdt_resource res;
796 	int ret;
797 
798 	q->dev = bus;
799 	q->devtype_data = (struct fsl_qspi_devtype_data *)
800 			   dev_get_driver_data(bus);
801 
802 	/* find the resources */
803 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names", "QuadSPI",
804 				     &res);
805 	if (ret) {
806 		dev_err(bus, "Can't get regs base addresses(ret = %d)!\n", ret);
807 		return -ENOMEM;
808 	}
809 
810 	q->iobase = map_physmem(res.start, res.end - res.start, MAP_NOCACHE);
811 
812 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
813 				     "QuadSPI-memory", &res);
814 	if (ret) {
815 		dev_err(bus, "Can't get AMBA base addresses(ret = %d)!\n", ret);
816 		return -ENOMEM;
817 	}
818 
819 	q->ahb_addr = map_physmem(res.start, res.end - res.start, MAP_NOCACHE);
820 	q->memmap_phy = res.start;
821 	q->memmap_size = res.end - res.start;
822 
823 	dm_bus->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
824 					66000000);
825 
826 	fsl_qspi_default_setup(q);
827 
828 	return 0;
829 }
830 
fsl_qspi_xfer(struct udevice * dev,unsigned int bitlen,const void * dout,void * din,unsigned long flags)831 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
832 			 const void *dout, void *din, unsigned long flags)
833 {
834 	return 0;
835 }
836 
fsl_qspi_claim_bus(struct udevice * dev)837 static int fsl_qspi_claim_bus(struct udevice *dev)
838 {
839 	return 0;
840 }
841 
fsl_qspi_release_bus(struct udevice * dev)842 static int fsl_qspi_release_bus(struct udevice *dev)
843 {
844 	return 0;
845 }
846 
fsl_qspi_set_speed(struct udevice * bus,uint speed)847 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
848 {
849 	return 0;
850 }
851 
fsl_qspi_set_mode(struct udevice * bus,uint mode)852 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
853 {
854 	return 0;
855 }
856 
857 static const struct dm_spi_ops fsl_qspi_ops = {
858 	.claim_bus	= fsl_qspi_claim_bus,
859 	.release_bus	= fsl_qspi_release_bus,
860 	.xfer		= fsl_qspi_xfer,
861 	.set_speed	= fsl_qspi_set_speed,
862 	.set_mode	= fsl_qspi_set_mode,
863 	.mem_ops	= &fsl_qspi_mem_ops,
864 };
865 
866 static const struct udevice_id fsl_qspi_ids[] = {
867 	{ .compatible = "fsl,vf610-qspi", .data = (ulong)&vybrid_data, },
868 	{ .compatible = "fsl,imx6sx-qspi", .data = (ulong)&imx6sx_data, },
869 	{ .compatible = "fsl,imx6ul-qspi", .data = (ulong)&imx6ul_data, },
870 	{ .compatible = "fsl,imx7d-qspi", .data = (ulong)&imx7d_data, },
871 	{ .compatible = "fsl,imx7ulp-qspi", .data = (ulong)&imx7ulp_data, },
872 	{ .compatible = "fsl,ls1021a-qspi", .data = (ulong)&ls1021a_data, },
873 	{ .compatible = "fsl,ls1088a-qspi", .data = (ulong)&ls2080a_data, },
874 	{ .compatible = "fsl,ls2080a-qspi", .data = (ulong)&ls2080a_data, },
875 	{ }
876 };
877 
878 U_BOOT_DRIVER(fsl_qspi) = {
879 	.name	= "fsl_qspi",
880 	.id	= UCLASS_SPI,
881 	.of_match = fsl_qspi_ids,
882 	.ops	= &fsl_qspi_ops,
883 	.priv_auto	= sizeof(struct fsl_qspi),
884 	.probe	= fsl_qspi_probe,
885 };
886