1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NXP FlexSPI(FSPI) controller driver.
4  *
5  * Copyright (c) 2019 Michael Walle <michael@walle.cc>
6  * Copyright (c) 2019 NXP
7  *
8  * This driver was originally ported from the linux kernel v5.4-rc3, which had
9  * the following notes:
10  *
11  * FlexSPI is a flexsible SPI host controller which supports two SPI
12  * channels and up to 4 external devices. Each channel supports
13  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
14  * data lines).
15  *
16  * FlexSPI controller is driven by the LUT(Look-up Table) registers
17  * LUT registers are a look-up-table for sequences of instructions.
18  * A valid sequence consists of four LUT registers.
19  * Maximum 32 LUT sequences can be programmed simultaneously.
20  *
21  * LUTs are being created at run-time based on the commands passed
22  * from the spi-mem framework, thus using single LUT index.
23  *
24  * Software triggered Flash read/write access by IP Bus.
25  *
26  * Memory mapped read access by AHB Bus.
27  *
28  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
29  *
30  * Author:
31  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
32  *     Boris Brezillon <bbrezillon@kernel.org>
33  *     Frieder Schrempf <frieder.schrempf@kontron.de>
34  */
35 
36 #include <common.h>
37 #include <clk.h>
38 #include <dm.h>
39 #include <dm/device_compat.h>
40 #include <malloc.h>
41 #include <spi.h>
42 #include <spi-mem.h>
43 #include <asm/io.h>
44 #include <linux/bitops.h>
45 #include <linux/kernel.h>
46 #include <linux/sizes.h>
47 #include <linux/iopoll.h>
48 #include <linux/bug.h>
49 #include <linux/err.h>
50 
51 /*
52  * The driver only uses one single LUT entry, that is updated on
53  * each call of exec_op(). Index 0 is preset at boot with a basic
54  * read operation, so let's use the last entry (31).
55  */
56 #define	SEQID_LUT			31
57 
58 /* Registers used by the driver */
59 #define FSPI_MCR0			0x00
60 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
61 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
62 #define FSPI_MCR0_LEARN_EN		BIT(15)
63 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
64 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
65 #define FSPI_MCR0_DOZE_EN		BIT(12)
66 #define FSPI_MCR0_HSEN			BIT(11)
67 #define FSPI_MCR0_SERCLKDIV		BIT(8)
68 #define FSPI_MCR0_ATDF_EN		BIT(7)
69 #define FSPI_MCR0_ARDF_EN		BIT(6)
70 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
71 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
72 #define FSPI_MCR0_MDIS			BIT(1)
73 #define FSPI_MCR0_SWRST			BIT(0)
74 
75 #define FSPI_MCR1			0x04
76 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
77 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
78 
79 #define FSPI_MCR2			0x08
80 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
81 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
82 #define FSPI_MCR2_CLRLRPHS		BIT(14)
83 #define FSPI_MCR2_ABRDATSZ		BIT(8)
84 #define FSPI_MCR2_ABRLEARN		BIT(7)
85 #define FSPI_MCR2_ABR_READ		BIT(6)
86 #define FSPI_MCR2_ABRWRITE		BIT(5)
87 #define FSPI_MCR2_ABRDUMMY		BIT(4)
88 #define FSPI_MCR2_ABR_MODE		BIT(3)
89 #define FSPI_MCR2_ABRCADDR		BIT(2)
90 #define FSPI_MCR2_ABRRADDR		BIT(1)
91 #define FSPI_MCR2_ABR_CMD		BIT(0)
92 
93 #define FSPI_AHBCR			0x0c
94 #define FSPI_AHBCR_RDADDROPT		BIT(6)
95 #define FSPI_AHBCR_PREF_EN		BIT(5)
96 #define FSPI_AHBCR_BUFF_EN		BIT(4)
97 #define FSPI_AHBCR_CACH_EN		BIT(3)
98 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
99 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
100 #define FSPI_AHBCR_PAR_EN		BIT(0)
101 
102 #define FSPI_INTEN			0x10
103 #define FSPI_INTEN_SCLKSBWR		BIT(9)
104 #define FSPI_INTEN_SCLKSBRD		BIT(8)
105 #define FSPI_INTEN_DATALRNFL		BIT(7)
106 #define FSPI_INTEN_IPTXWE		BIT(6)
107 #define FSPI_INTEN_IPRXWA		BIT(5)
108 #define FSPI_INTEN_AHBCMDERR		BIT(4)
109 #define FSPI_INTEN_IPCMDERR		BIT(3)
110 #define FSPI_INTEN_AHBCMDGE		BIT(2)
111 #define FSPI_INTEN_IPCMDGE		BIT(1)
112 #define FSPI_INTEN_IPCMDDONE		BIT(0)
113 
114 #define FSPI_INTR			0x14
115 #define FSPI_INTR_SCLKSBWR		BIT(9)
116 #define FSPI_INTR_SCLKSBRD		BIT(8)
117 #define FSPI_INTR_DATALRNFL		BIT(7)
118 #define FSPI_INTR_IPTXWE		BIT(6)
119 #define FSPI_INTR_IPRXWA		BIT(5)
120 #define FSPI_INTR_AHBCMDERR		BIT(4)
121 #define FSPI_INTR_IPCMDERR		BIT(3)
122 #define FSPI_INTR_AHBCMDGE		BIT(2)
123 #define FSPI_INTR_IPCMDGE		BIT(1)
124 #define FSPI_INTR_IPCMDDONE		BIT(0)
125 
126 #define FSPI_LUTKEY			0x18
127 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
128 
129 #define FSPI_LCKCR			0x1C
130 
131 #define FSPI_LCKER_LOCK			0x1
132 #define FSPI_LCKER_UNLOCK		0x2
133 
134 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
135 #define FSPI_AHBRX_BUF0CR0		0x20
136 #define FSPI_AHBRX_BUF1CR0		0x24
137 #define FSPI_AHBRX_BUF2CR0		0x28
138 #define FSPI_AHBRX_BUF3CR0		0x2C
139 #define FSPI_AHBRX_BUF4CR0		0x30
140 #define FSPI_AHBRX_BUF5CR0		0x34
141 #define FSPI_AHBRX_BUF6CR0		0x38
142 #define FSPI_AHBRX_BUF7CR0		0x3C
143 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
144 
145 #define FSPI_AHBRX_BUF0CR1		0x40
146 #define FSPI_AHBRX_BUF1CR1		0x44
147 #define FSPI_AHBRX_BUF2CR1		0x48
148 #define FSPI_AHBRX_BUF3CR1		0x4C
149 #define FSPI_AHBRX_BUF4CR1		0x50
150 #define FSPI_AHBRX_BUF5CR1		0x54
151 #define FSPI_AHBRX_BUF6CR1		0x58
152 #define FSPI_AHBRX_BUF7CR1		0x5C
153 
154 #define FSPI_FLSHA1CR0			0x60
155 #define FSPI_FLSHA2CR0			0x64
156 #define FSPI_FLSHB1CR0			0x68
157 #define FSPI_FLSHB2CR0			0x6C
158 #define FSPI_FLSHXCR0_SZ_KB		10
159 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
160 
161 #define FSPI_FLSHA1CR1			0x70
162 #define FSPI_FLSHA2CR1			0x74
163 #define FSPI_FLSHB1CR1			0x78
164 #define FSPI_FLSHB2CR1			0x7C
165 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
166 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
167 #define FSPI_FLSHXCR1_WA		BIT(10)
168 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
169 #define FSPI_FLSHXCR1_TCSS(x)		(x)
170 
171 #define FSPI_FLSHA1CR2			0x80
172 #define FSPI_FLSHA2CR2			0x84
173 #define FSPI_FLSHB1CR2			0x88
174 #define FSPI_FLSHB2CR2			0x8C
175 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
176 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
177 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
178 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
179 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
180 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
181 
182 #define FSPI_IPCR0			0xA0
183 
184 #define FSPI_IPCR1			0xA4
185 #define FSPI_IPCR1_IPAREN		BIT(31)
186 #define FSPI_IPCR1_SEQNUM_SHIFT		24
187 #define FSPI_IPCR1_SEQID_SHIFT		16
188 #define FSPI_IPCR1_IDATSZ(x)		(x)
189 
190 #define FSPI_IPCMD			0xB0
191 #define FSPI_IPCMD_TRG			BIT(0)
192 
193 #define FSPI_DLPR			0xB4
194 
195 #define FSPI_IPRXFCR			0xB8
196 #define FSPI_IPRXFCR_CLR		BIT(0)
197 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
198 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
199 
200 #define FSPI_IPTXFCR			0xBC
201 #define FSPI_IPTXFCR_CLR		BIT(0)
202 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
203 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
204 
205 #define FSPI_DLLACR			0xC0
206 #define FSPI_DLLACR_OVRDEN		BIT(8)
207 
208 #define FSPI_DLLBCR			0xC4
209 #define FSPI_DLLBCR_OVRDEN		BIT(8)
210 
211 #define FSPI_STS0			0xE0
212 #define FSPI_STS0_DLPHB(x)		((x) << 8)
213 #define FSPI_STS0_DLPHA(x)		((x) << 4)
214 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
215 #define FSPI_STS0_ARB_IDLE		BIT(1)
216 #define FSPI_STS0_SEQ_IDLE		BIT(0)
217 
218 #define FSPI_STS1			0xE4
219 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
220 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
221 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
222 #define FSPI_STS1_AHB_ERRID(x)		(x)
223 
224 #define FSPI_AHBSPNST			0xEC
225 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
226 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
227 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
228 
229 #define FSPI_IPRXFSTS			0xF0
230 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
231 #define FSPI_IPRXFSTS_FILL(x)		(x)
232 
233 #define FSPI_IPTXFSTS			0xF4
234 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
235 #define FSPI_IPTXFSTS_FILL(x)		(x)
236 
237 #define FSPI_RFDR			0x100
238 #define FSPI_TFDR			0x180
239 
240 #define FSPI_LUT_BASE			0x200
241 #define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
242 #define FSPI_LUT_REG(idx) \
243 	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
244 
245 /* register map end */
246 
247 /* Instruction set for the LUT register. */
248 #define LUT_STOP			0x00
249 #define LUT_CMD				0x01
250 #define LUT_ADDR			0x02
251 #define LUT_CADDR_SDR			0x03
252 #define LUT_MODE			0x04
253 #define LUT_MODE2			0x05
254 #define LUT_MODE4			0x06
255 #define LUT_MODE8			0x07
256 #define LUT_NXP_WRITE			0x08
257 #define LUT_NXP_READ			0x09
258 #define LUT_LEARN_SDR			0x0A
259 #define LUT_DATSZ_SDR			0x0B
260 #define LUT_DUMMY			0x0C
261 #define LUT_DUMMY_RWDS_SDR		0x0D
262 #define LUT_JMP_ON_CS			0x1F
263 #define LUT_CMD_DDR			0x21
264 #define LUT_ADDR_DDR			0x22
265 #define LUT_CADDR_DDR			0x23
266 #define LUT_MODE_DDR			0x24
267 #define LUT_MODE2_DDR			0x25
268 #define LUT_MODE4_DDR			0x26
269 #define LUT_MODE8_DDR			0x27
270 #define LUT_WRITE_DDR			0x28
271 #define LUT_READ_DDR			0x29
272 #define LUT_LEARN_DDR			0x2A
273 #define LUT_DATSZ_DDR			0x2B
274 #define LUT_DUMMY_DDR			0x2C
275 #define LUT_DUMMY_RWDS_DDR		0x2D
276 
277 /*
278  * Calculate number of required PAD bits for LUT register.
279  *
280  * The pad stands for the number of IO lines [0:7].
281  * For example, the octal read needs eight IO lines,
282  * so you should use LUT_PAD(8). This macro
283  * returns 3 i.e. use eight (2^3) IP lines for read.
284  */
285 #define LUT_PAD(x) (fls(x) - 1)
286 
287 /*
288  * Macro for constructing the LUT entries with the following
289  * register layout:
290  *
291  *  ---------------------------------------------------
292  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
293  *  ---------------------------------------------------
294  */
295 #define PAD_SHIFT		8
296 #define INSTR_SHIFT		10
297 #define OPRND_SHIFT		16
298 
299 /* Macros for constructing the LUT register. */
300 #define LUT_DEF(idx, ins, pad, opr)			  \
301 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
302 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
303 
304 #define POLL_TOUT		5000
305 #define NXP_FSPI_MAX_CHIPSELECT		4
306 
307 struct nxp_fspi_devtype_data {
308 	unsigned int rxfifo;
309 	unsigned int txfifo;
310 	unsigned int ahb_buf_size;
311 	unsigned int quirks;
312 	bool little_endian;
313 };
314 
315 static const struct nxp_fspi_devtype_data lx2160a_data = {
316 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
317 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
318 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
319 	.quirks = 0,
320 	.little_endian = true,  /* little-endian    */
321 };
322 
323 static const struct nxp_fspi_devtype_data imx8mm_data = {
324 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
325 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
326 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
327 	.quirks = 0,
328 	.little_endian = true,  /* little-endian    */
329 };
330 
331 struct nxp_fspi {
332 	struct udevice *dev;
333 	void __iomem *iobase;
334 	void __iomem *ahb_addr;
335 	u32 memmap_phy;
336 	u32 memmap_phy_size;
337 	struct clk clk, clk_en;
338 	const struct nxp_fspi_devtype_data *devtype_data;
339 };
340 
341 /*
342  * R/W functions for big- or little-endian registers:
343  * The FSPI controller's endianness is independent of
344  * the CPU core's endianness. So far, although the CPU
345  * core is little-endian the FSPI controller can use
346  * big-endian or little-endian.
347  */
fspi_writel(struct nxp_fspi * f,u32 val,void __iomem * addr)348 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
349 {
350 	if (f->devtype_data->little_endian)
351 		out_le32(addr, val);
352 	else
353 		out_be32(addr, val);
354 }
355 
fspi_readl(struct nxp_fspi * f,void __iomem * addr)356 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
357 {
358 	if (f->devtype_data->little_endian)
359 		return in_le32(addr);
360 	else
361 		return in_be32(addr);
362 }
363 
nxp_fspi_check_buswidth(struct nxp_fspi * f,u8 width)364 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
365 {
366 	switch (width) {
367 	case 1:
368 	case 2:
369 	case 4:
370 	case 8:
371 		return 0;
372 	}
373 
374 	return -ENOTSUPP;
375 }
376 
nxp_fspi_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)377 static bool nxp_fspi_supports_op(struct spi_slave *slave,
378 				 const struct spi_mem_op *op)
379 {
380 	struct nxp_fspi *f;
381 	struct udevice *bus;
382 	int ret;
383 
384 	bus = slave->dev->parent;
385 	f = dev_get_priv(bus);
386 
387 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
388 
389 	if (op->addr.nbytes)
390 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
391 
392 	if (op->dummy.nbytes)
393 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
394 
395 	if (op->data.nbytes)
396 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
397 
398 	if (ret)
399 		return false;
400 
401 	/*
402 	 * The number of address bytes should be equal to or less than 4 bytes.
403 	 */
404 	if (op->addr.nbytes > 4)
405 		return false;
406 
407 	/*
408 	 * If requested address value is greater than controller assigned
409 	 * memory mapped space, return error as it didn't fit in the range
410 	 * of assigned address space.
411 	 */
412 	if (op->addr.val >= f->memmap_phy_size)
413 		return false;
414 
415 	/* Max 64 dummy clock cycles supported */
416 	if (op->dummy.buswidth &&
417 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
418 		return false;
419 
420 	/* Max data length, check controller limits and alignment */
421 	if (op->data.dir == SPI_MEM_DATA_IN &&
422 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
423 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
424 	      !IS_ALIGNED(op->data.nbytes, 8))))
425 		return false;
426 
427 	if (op->data.dir == SPI_MEM_DATA_OUT &&
428 	    op->data.nbytes > f->devtype_data->txfifo)
429 		return false;
430 
431 	return true;
432 }
433 
434 /* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */
fspi_readl_poll_tout(struct nxp_fspi * f,void __iomem * base,u32 mask,u32 delay_us,u32 timeout_us,bool c)435 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
436 				u32 mask, u32 delay_us,
437 				u32 timeout_us, bool c)
438 {
439 	u32 reg;
440 
441 	if (!f->devtype_data->little_endian)
442 		mask = (u32)cpu_to_be32(mask);
443 
444 	if (c)
445 		return readl_poll_sleep_timeout(base, reg, (reg & mask),
446 						delay_us, timeout_us);
447 	else
448 		return readl_poll_sleep_timeout(base, reg, !(reg & mask),
449 						delay_us, timeout_us);
450 }
451 
452 /*
453  * If the slave device content being changed by Write/Erase, need to
454  * invalidate the AHB buffer. This can be achieved by doing the reset
455  * of controller after setting MCR0[SWRESET] bit.
456  */
nxp_fspi_invalid(struct nxp_fspi * f)457 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
458 {
459 	u32 reg;
460 	int ret;
461 
462 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
463 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
464 
465 	/* w1c register, wait unit clear */
466 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
467 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
468 	WARN_ON(ret);
469 }
470 
nxp_fspi_prepare_lut(struct nxp_fspi * f,const struct spi_mem_op * op)471 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
472 				 const struct spi_mem_op *op)
473 {
474 	void __iomem *base = f->iobase;
475 	u32 lutval[4] = {};
476 	int lutidx = 1, i;
477 
478 	/* cmd */
479 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
480 			     op->cmd.opcode);
481 
482 	/* addr bytes */
483 	if (op->addr.nbytes) {
484 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
485 					      LUT_PAD(op->addr.buswidth),
486 					      op->addr.nbytes * 8);
487 		lutidx++;
488 	}
489 
490 	/* dummy bytes, if needed */
491 	if (op->dummy.nbytes) {
492 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
493 		/*
494 		 * Due to FlexSPI controller limitation number of PAD for dummy
495 		 * buswidth needs to be programmed as equal to data buswidth.
496 		 */
497 					      LUT_PAD(op->data.buswidth),
498 					      op->dummy.nbytes * 8 /
499 					      op->dummy.buswidth);
500 		lutidx++;
501 	}
502 
503 	/* read/write data bytes */
504 	if (op->data.nbytes) {
505 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
506 					      op->data.dir == SPI_MEM_DATA_IN ?
507 					      LUT_NXP_READ : LUT_NXP_WRITE,
508 					      LUT_PAD(op->data.buswidth),
509 					      0);
510 		lutidx++;
511 	}
512 
513 	/* stop condition. */
514 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
515 
516 	/* unlock LUT */
517 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
518 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
519 
520 	/* fill LUT */
521 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
522 		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
523 
524 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
525 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
526 
527 	/* lock LUT */
528 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
529 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
530 }
531 
532 #if CONFIG_IS_ENABLED(CLK)
nxp_fspi_clk_prep_enable(struct nxp_fspi * f)533 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
534 {
535 	int ret;
536 
537 	ret = clk_enable(&f->clk_en);
538 	if (ret)
539 		return ret;
540 
541 	ret = clk_enable(&f->clk);
542 	if (ret) {
543 		clk_disable(&f->clk_en);
544 		return ret;
545 	}
546 
547 	return 0;
548 }
549 
nxp_fspi_clk_disable_unprep(struct nxp_fspi * f)550 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
551 {
552 	clk_disable(&f->clk);
553 	clk_disable(&f->clk_en);
554 }
555 #endif
556 
557 /*
558  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
559  * register and start base address of the slave device.
560  *
561  *							    (Higher address)
562  *				--------    <-- FLSHB2CR0
563  *				|  B2  |
564  *				|      |
565  *	B2 start address -->	--------    <-- FLSHB1CR0
566  *				|  B1  |
567  *				|      |
568  *	B1 start address -->	--------    <-- FLSHA2CR0
569  *				|  A2  |
570  *				|      |
571  *	A2 start address -->	--------    <-- FLSHA1CR0
572  *				|  A1  |
573  *				|      |
574  *	A1 start address -->	--------		    (Lower address)
575  *
576  *
577  * Start base address defines the starting address range for given CS and
578  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
579  *
580  * But, different targets are having different combinations of number of CS,
581  * some targets only have single CS or two CS covering controller's full
582  * memory mapped space area.
583  * Thus, implementation is being done as independent of the size and number
584  * of the connected slave device.
585  * Assign controller memory mapped space size as the size to the connected
586  * slave device.
587  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
588  * chip-select Flash configuration register.
589  *
590  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
591  * memory mapped size of the controller.
592  * Value for rest of the CS FLSHxxCR0 register would be zero.
593  *
594  */
nxp_fspi_select_mem(struct nxp_fspi * f,int chip_select)595 static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
596 {
597 	u64 size_kb;
598 
599 	/* Reset FLSHxxCR0 registers */
600 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
601 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
602 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
603 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
604 
605 	/* Assign controller memory mapped space as size, KBytes, of flash. */
606 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
607 
608 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
609 		    4 * chip_select);
610 
611 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
612 }
613 
nxp_fspi_read_ahb(struct nxp_fspi * f,const struct spi_mem_op * op)614 static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
615 {
616 	u32 len = op->data.nbytes;
617 
618 	/* Read out the data directly from the AHB buffer. */
619 	memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
620 }
621 
nxp_fspi_fill_txfifo(struct nxp_fspi * f,const struct spi_mem_op * op)622 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
623 				 const struct spi_mem_op *op)
624 {
625 	void __iomem *base = f->iobase;
626 	int i, ret;
627 	u8 *buf = (u8 *)op->data.buf.out;
628 
629 	/* clear the TX FIFO. */
630 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
631 
632 	/*
633 	 * Default value of water mark level is 8 bytes, hence in single
634 	 * write request controller can write max 8 bytes of data.
635 	 */
636 
637 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
638 		/* Wait for TXFIFO empty */
639 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
640 					   FSPI_INTR_IPTXWE, 0,
641 					   POLL_TOUT, true);
642 		WARN_ON(ret);
643 
644 		fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
645 		fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
646 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
647 	}
648 
649 	if (i < op->data.nbytes) {
650 		u32 data = 0;
651 		int j;
652 		/* Wait for TXFIFO empty */
653 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
654 					   FSPI_INTR_IPTXWE, 0,
655 					   POLL_TOUT, true);
656 		WARN_ON(ret);
657 
658 		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
659 			memcpy(&data, buf + i + j, 4);
660 			fspi_writel(f, data, base + FSPI_TFDR + j);
661 		}
662 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
663 	}
664 }
665 
nxp_fspi_read_rxfifo(struct nxp_fspi * f,const struct spi_mem_op * op)666 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
667 				 const struct spi_mem_op *op)
668 {
669 	void __iomem *base = f->iobase;
670 	int i, ret;
671 	int len = op->data.nbytes;
672 	u8 *buf = (u8 *)op->data.buf.in;
673 
674 	/*
675 	 * Default value of water mark level is 8 bytes, hence in single
676 	 * read request controller can read max 8 bytes of data.
677 	 */
678 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
679 		/* Wait for RXFIFO available */
680 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
681 					   FSPI_INTR_IPRXWA, 0,
682 					   POLL_TOUT, true);
683 		WARN_ON(ret);
684 
685 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
686 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
687 		/* move the FIFO pointer */
688 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
689 	}
690 
691 	if (i < len) {
692 		u32 tmp;
693 		int size, j;
694 
695 		buf = op->data.buf.in + i;
696 		/* Wait for RXFIFO available */
697 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
698 					   FSPI_INTR_IPRXWA, 0,
699 					   POLL_TOUT, true);
700 		WARN_ON(ret);
701 
702 		len = op->data.nbytes - i;
703 		for (j = 0; j < op->data.nbytes - i; j += 4) {
704 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
705 			size = min(len, 4);
706 			memcpy(buf + j, &tmp, size);
707 			len -= size;
708 		}
709 	}
710 
711 	/* invalid the RXFIFO */
712 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
713 	/* move the FIFO pointer */
714 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
715 }
716 
nxp_fspi_do_op(struct nxp_fspi * f,const struct spi_mem_op * op)717 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
718 {
719 	void __iomem *base = f->iobase;
720 	int seqnum = 0;
721 	int err = 0;
722 	u32 reg;
723 
724 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
725 	/* invalid RXFIFO first */
726 	reg &= ~FSPI_IPRXFCR_DMA_EN;
727 	reg = reg | FSPI_IPRXFCR_CLR;
728 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
729 
730 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
731 	/*
732 	 * Always start the sequence at the same index since we update
733 	 * the LUT at each exec_op() call. And also specify the DATA
734 	 * length, since it's has not been specified in the LUT.
735 	 */
736 	fspi_writel(f, op->data.nbytes |
737 		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
738 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
739 		 base + FSPI_IPCR1);
740 
741 	/* Trigger the LUT now. */
742 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
743 
744 	/* Wait for the completion. */
745 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
746 				   FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
747 
748 	/* Invoke IP data read, if request is of data read. */
749 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
750 		nxp_fspi_read_rxfifo(f, op);
751 
752 	return err;
753 }
754 
nxp_fspi_exec_op(struct spi_slave * slave,const struct spi_mem_op * op)755 static int nxp_fspi_exec_op(struct spi_slave *slave,
756 			    const struct spi_mem_op *op)
757 {
758 	struct nxp_fspi *f;
759 	struct udevice *bus;
760 	int err = 0;
761 
762 	bus = slave->dev->parent;
763 	f = dev_get_priv(bus);
764 
765 	/* Wait for controller being ready. */
766 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
767 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
768 	WARN_ON(err);
769 
770 	nxp_fspi_prepare_lut(f, op);
771 	/*
772 	 * If we have large chunks of data, we read them through the AHB bus
773 	 * by accessing the mapped memory. In all other cases we use
774 	 * IP commands to access the flash.
775 	 */
776 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
777 	    op->data.dir == SPI_MEM_DATA_IN) {
778 		nxp_fspi_read_ahb(f, op);
779 	} else {
780 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
781 			nxp_fspi_fill_txfifo(f, op);
782 
783 		err = nxp_fspi_do_op(f, op);
784 	}
785 
786 	/* Invalidate the data in the AHB buffer. */
787 	nxp_fspi_invalid(f);
788 
789 	return err;
790 }
791 
nxp_fspi_adjust_op_size(struct spi_slave * slave,struct spi_mem_op * op)792 static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
793 				   struct spi_mem_op *op)
794 {
795 	struct nxp_fspi *f;
796 	struct udevice *bus;
797 
798 	bus = slave->dev->parent;
799 	f = dev_get_priv(bus);
800 
801 	if (op->data.dir == SPI_MEM_DATA_OUT) {
802 		if (op->data.nbytes > f->devtype_data->txfifo)
803 			op->data.nbytes = f->devtype_data->txfifo;
804 	} else {
805 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
806 			op->data.nbytes = f->devtype_data->ahb_buf_size;
807 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
808 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
809 	}
810 
811 	return 0;
812 }
813 
nxp_fspi_default_setup(struct nxp_fspi * f)814 static int nxp_fspi_default_setup(struct nxp_fspi *f)
815 {
816 	void __iomem *base = f->iobase;
817 	int ret, i;
818 	u32 reg;
819 
820 #if CONFIG_IS_ENABLED(CLK)
821 	/* disable and unprepare clock to avoid glitch pass to controller */
822 	nxp_fspi_clk_disable_unprep(f);
823 
824 	/* the default frequency, we will change it later if necessary. */
825 	ret = clk_set_rate(&f->clk, 20000000);
826 	if (ret < 0)
827 		return ret;
828 
829 	ret = nxp_fspi_clk_prep_enable(f);
830 	if (ret)
831 		return ret;
832 #endif
833 
834 	/* Reset the module */
835 	/* w1c register, wait unit clear */
836 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
837 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
838 	WARN_ON(ret);
839 
840 	/* Disable the module */
841 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
842 
843 	/* Reset the DLL register to default value */
844 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
845 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
846 
847 	/* enable module */
848 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
849 		    base + FSPI_MCR0);
850 
851 	/*
852 	 * Disable same device enable bit and configure all slave devices
853 	 * independently.
854 	 */
855 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
856 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
857 	fspi_writel(f, reg, base + FSPI_MCR2);
858 
859 	/* AHB configuration for access buffer 0~7. */
860 	for (i = 0; i < 7; i++)
861 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
862 
863 	/*
864 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
865 	 * performance.
866 	 */
867 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
868 		    FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
869 
870 	/* prefetch and no start address alignment limitation */
871 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
872 		    base + FSPI_AHBCR);
873 
874 	/* AHB Read - Set lut sequence ID for all CS. */
875 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
876 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
877 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
878 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
879 
880 	return 0;
881 }
882 
nxp_fspi_probe(struct udevice * bus)883 static int nxp_fspi_probe(struct udevice *bus)
884 {
885 	struct nxp_fspi *f = dev_get_priv(bus);
886 
887 	f->devtype_data =
888 		(struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
889 	nxp_fspi_default_setup(f);
890 
891 	return 0;
892 }
893 
nxp_fspi_claim_bus(struct udevice * dev)894 static int nxp_fspi_claim_bus(struct udevice *dev)
895 {
896 	struct nxp_fspi *f;
897 	struct udevice *bus;
898 	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
899 
900 	bus = dev->parent;
901 	f = dev_get_priv(bus);
902 
903 	nxp_fspi_select_mem(f, slave_plat->cs);
904 
905 	return 0;
906 }
907 
nxp_fspi_set_speed(struct udevice * bus,uint speed)908 static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
909 {
910 #if CONFIG_IS_ENABLED(CLK)
911 	struct nxp_fspi *f = dev_get_priv(bus);
912 	int ret;
913 
914 	nxp_fspi_clk_disable_unprep(f);
915 
916 	ret = clk_set_rate(&f->clk, speed);
917 	if (ret < 0)
918 		return ret;
919 
920 	ret = nxp_fspi_clk_prep_enable(f);
921 	if (ret)
922 		return ret;
923 #endif
924 	return 0;
925 }
926 
nxp_fspi_set_mode(struct udevice * bus,uint mode)927 static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
928 {
929 	/* Nothing to do */
930 	return 0;
931 }
932 
nxp_fspi_of_to_plat(struct udevice * bus)933 static int nxp_fspi_of_to_plat(struct udevice *bus)
934 {
935 	struct nxp_fspi *f = dev_get_priv(bus);
936 #if CONFIG_IS_ENABLED(CLK)
937 	int ret;
938 #endif
939 
940 	fdt_addr_t iobase;
941 	fdt_addr_t iobase_size;
942 	fdt_addr_t ahb_addr;
943 	fdt_addr_t ahb_size;
944 
945 	f->dev = bus;
946 
947 	iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
948 	if (iobase == FDT_ADDR_T_NONE) {
949 		dev_err(bus, "fspi_base regs missing\n");
950 		return -ENODEV;
951 	}
952 	f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
953 
954 	ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
955 	if (ahb_addr == FDT_ADDR_T_NONE) {
956 		dev_err(bus, "fspi_mmap regs missing\n");
957 		return -ENODEV;
958 	}
959 	f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
960 	f->memmap_phy_size = ahb_size;
961 
962 #if CONFIG_IS_ENABLED(CLK)
963 	ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
964 	if (ret) {
965 		dev_err(bus, "failed to get fspi_en clock\n");
966 		return ret;
967 	}
968 
969 	ret = clk_get_by_name(bus, "fspi", &f->clk);
970 	if (ret) {
971 		dev_err(bus, "failed to get fspi clock\n");
972 		return ret;
973 	}
974 #endif
975 
976 	dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
977 
978 	return 0;
979 }
980 
981 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
982 	.adjust_op_size = nxp_fspi_adjust_op_size,
983 	.supports_op = nxp_fspi_supports_op,
984 	.exec_op = nxp_fspi_exec_op,
985 };
986 
987 static const struct dm_spi_ops nxp_fspi_ops = {
988 	.claim_bus	= nxp_fspi_claim_bus,
989 	.set_speed	= nxp_fspi_set_speed,
990 	.set_mode	= nxp_fspi_set_mode,
991 	.mem_ops        = &nxp_fspi_mem_ops,
992 };
993 
994 static const struct udevice_id nxp_fspi_ids[] = {
995 	{ .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
996 	{ .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, },
997 	{ }
998 };
999 
1000 U_BOOT_DRIVER(nxp_fspi) = {
1001 	.name	= "nxp_fspi",
1002 	.id	= UCLASS_SPI,
1003 	.of_match = nxp_fspi_ids,
1004 	.ops	= &nxp_fspi_ops,
1005 	.of_to_plat = nxp_fspi_of_to_plat,
1006 	.priv_auto	= sizeof(struct nxp_fspi),
1007 	.probe	= nxp_fspi_probe,
1008 };
1009