1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8
9 #ifndef __UBOOT__
10 #include <log.h>
11 #include <dm/devres.h>
12 #include <linux/dmaengine.h>
13 #include <linux/pm_runtime.h>
14 #include "internals.h"
15 #else
16 #include <common.h>
17 #include <dm.h>
18 #include <errno.h>
19 #include <malloc.h>
20 #include <spi.h>
21 #include <spi.h>
22 #include <spi-mem.h>
23 #include <dm/device_compat.h>
24 #endif
25
26 #ifndef __UBOOT__
27 /**
28 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
29 * memory operation
30 * @ctlr: the SPI controller requesting this dma_map()
31 * @op: the memory operation containing the buffer to map
32 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
33 * function
34 *
35 * Some controllers might want to do DMA on the data buffer embedded in @op.
36 * This helper prepares everything for you and provides a ready-to-use
37 * sg_table. This function is not intended to be called from spi drivers.
38 * Only SPI controller drivers should use it.
39 * Note that the caller must ensure the memory region pointed by
40 * op->data.buf.{in,out} is DMA-able before calling this function.
41 *
42 * Return: 0 in case of success, a negative error code otherwise.
43 */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)44 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
45 const struct spi_mem_op *op,
46 struct sg_table *sgt)
47 {
48 struct device *dmadev;
49
50 if (!op->data.nbytes)
51 return -EINVAL;
52
53 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
54 dmadev = ctlr->dma_tx->device->dev;
55 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
56 dmadev = ctlr->dma_rx->device->dev;
57 else
58 dmadev = ctlr->dev.parent;
59
60 if (!dmadev)
61 return -EINVAL;
62
63 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
64 op->data.dir == SPI_MEM_DATA_IN ?
65 DMA_FROM_DEVICE : DMA_TO_DEVICE);
66 }
67 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
68
69 /**
70 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
71 * memory operation
72 * @ctlr: the SPI controller requesting this dma_unmap()
73 * @op: the memory operation containing the buffer to unmap
74 * @sgt: a pointer to an sg_table previously initialized by
75 * spi_controller_dma_map_mem_op_data()
76 *
77 * Some controllers might want to do DMA on the data buffer embedded in @op.
78 * This helper prepares things so that the CPU can access the
79 * op->data.buf.{in,out} buffer again.
80 *
81 * This function is not intended to be called from SPI drivers. Only SPI
82 * controller drivers should use it.
83 *
84 * This function should be called after the DMA operation has finished and is
85 * only valid if the previous spi_controller_dma_map_mem_op_data() call
86 * returned 0.
87 *
88 * Return: 0 in case of success, a negative error code otherwise.
89 */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)90 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
91 const struct spi_mem_op *op,
92 struct sg_table *sgt)
93 {
94 struct device *dmadev;
95
96 if (!op->data.nbytes)
97 return;
98
99 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
100 dmadev = ctlr->dma_tx->device->dev;
101 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
102 dmadev = ctlr->dma_rx->device->dev;
103 else
104 dmadev = ctlr->dev.parent;
105
106 spi_unmap_buf(ctlr, dmadev, sgt,
107 op->data.dir == SPI_MEM_DATA_IN ?
108 DMA_FROM_DEVICE : DMA_TO_DEVICE);
109 }
110 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
111 #endif /* __UBOOT__ */
112
spi_check_buswidth_req(struct spi_slave * slave,u8 buswidth,bool tx)113 static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
114 {
115 u32 mode = slave->mode;
116
117 switch (buswidth) {
118 case 1:
119 return 0;
120
121 case 2:
122 if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
123 (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
124 return 0;
125
126 break;
127
128 case 4:
129 if ((tx && (mode & SPI_TX_QUAD)) ||
130 (!tx && (mode & SPI_RX_QUAD)))
131 return 0;
132
133 break;
134 case 8:
135 if ((tx && (mode & SPI_TX_OCTAL)) ||
136 (!tx && (mode & SPI_RX_OCTAL)))
137 return 0;
138
139 break;
140
141 default:
142 break;
143 }
144
145 return -ENOTSUPP;
146 }
147
spi_mem_default_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)148 bool spi_mem_default_supports_op(struct spi_slave *slave,
149 const struct spi_mem_op *op)
150 {
151 if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
152 return false;
153
154 if (op->addr.nbytes &&
155 spi_check_buswidth_req(slave, op->addr.buswidth, true))
156 return false;
157
158 if (op->dummy.nbytes &&
159 spi_check_buswidth_req(slave, op->dummy.buswidth, true))
160 return false;
161
162 if (op->data.dir != SPI_MEM_NO_DATA &&
163 spi_check_buswidth_req(slave, op->data.buswidth,
164 op->data.dir == SPI_MEM_DATA_OUT))
165 return false;
166
167 return true;
168 }
169 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
170
171 /**
172 * spi_mem_supports_op() - Check if a memory device and the controller it is
173 * connected to support a specific memory operation
174 * @slave: the SPI device
175 * @op: the memory operation to check
176 *
177 * Some controllers are only supporting Single or Dual IOs, others might only
178 * support specific opcodes, or it can even be that the controller and device
179 * both support Quad IOs but the hardware prevents you from using it because
180 * only 2 IO lines are connected.
181 *
182 * This function checks whether a specific operation is supported.
183 *
184 * Return: true if @op is supported, false otherwise.
185 */
spi_mem_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)186 bool spi_mem_supports_op(struct spi_slave *slave,
187 const struct spi_mem_op *op)
188 {
189 struct udevice *bus = slave->dev->parent;
190 struct dm_spi_ops *ops = spi_get_ops(bus);
191
192 if (ops->mem_ops && ops->mem_ops->supports_op)
193 return ops->mem_ops->supports_op(slave, op);
194
195 return spi_mem_default_supports_op(slave, op);
196 }
197 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
198
199 /**
200 * spi_mem_exec_op() - Execute a memory operation
201 * @slave: the SPI device
202 * @op: the memory operation to execute
203 *
204 * Executes a memory operation.
205 *
206 * This function first checks that @op is supported and then tries to execute
207 * it.
208 *
209 * Return: 0 in case of success, a negative error code otherwise.
210 */
spi_mem_exec_op(struct spi_slave * slave,const struct spi_mem_op * op)211 int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
212 {
213 struct udevice *bus = slave->dev->parent;
214 struct dm_spi_ops *ops = spi_get_ops(bus);
215 unsigned int pos = 0;
216 const u8 *tx_buf = NULL;
217 u8 *rx_buf = NULL;
218 int op_len;
219 u32 flag;
220 int ret;
221 int i;
222
223 if (!spi_mem_supports_op(slave, op))
224 return -ENOTSUPP;
225
226 ret = spi_claim_bus(slave);
227 if (ret < 0)
228 return ret;
229
230 if (ops->mem_ops && ops->mem_ops->exec_op) {
231 #ifndef __UBOOT__
232 /*
233 * Flush the message queue before executing our SPI memory
234 * operation to prevent preemption of regular SPI transfers.
235 */
236 spi_flush_queue(ctlr);
237
238 if (ctlr->auto_runtime_pm) {
239 ret = pm_runtime_get_sync(ctlr->dev.parent);
240 if (ret < 0) {
241 dev_err(&ctlr->dev,
242 "Failed to power device: %d\n",
243 ret);
244 return ret;
245 }
246 }
247
248 mutex_lock(&ctlr->bus_lock_mutex);
249 mutex_lock(&ctlr->io_mutex);
250 #endif
251 ret = ops->mem_ops->exec_op(slave, op);
252
253 #ifndef __UBOOT__
254 mutex_unlock(&ctlr->io_mutex);
255 mutex_unlock(&ctlr->bus_lock_mutex);
256
257 if (ctlr->auto_runtime_pm)
258 pm_runtime_put(ctlr->dev.parent);
259 #endif
260
261 /*
262 * Some controllers only optimize specific paths (typically the
263 * read path) and expect the core to use the regular SPI
264 * interface in other cases.
265 */
266 if (!ret || ret != -ENOTSUPP) {
267 spi_release_bus(slave);
268 return ret;
269 }
270 }
271
272 #ifndef __UBOOT__
273 tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
274 op->dummy.nbytes;
275
276 /*
277 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
278 * we're guaranteed that this buffer is DMA-able, as required by the
279 * SPI layer.
280 */
281 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
282 if (!tmpbuf)
283 return -ENOMEM;
284
285 spi_message_init(&msg);
286
287 tmpbuf[0] = op->cmd.opcode;
288 xfers[xferpos].tx_buf = tmpbuf;
289 xfers[xferpos].len = sizeof(op->cmd.opcode);
290 xfers[xferpos].tx_nbits = op->cmd.buswidth;
291 spi_message_add_tail(&xfers[xferpos], &msg);
292 xferpos++;
293 totalxferlen++;
294
295 if (op->addr.nbytes) {
296 int i;
297
298 for (i = 0; i < op->addr.nbytes; i++)
299 tmpbuf[i + 1] = op->addr.val >>
300 (8 * (op->addr.nbytes - i - 1));
301
302 xfers[xferpos].tx_buf = tmpbuf + 1;
303 xfers[xferpos].len = op->addr.nbytes;
304 xfers[xferpos].tx_nbits = op->addr.buswidth;
305 spi_message_add_tail(&xfers[xferpos], &msg);
306 xferpos++;
307 totalxferlen += op->addr.nbytes;
308 }
309
310 if (op->dummy.nbytes) {
311 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
312 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
313 xfers[xferpos].len = op->dummy.nbytes;
314 xfers[xferpos].tx_nbits = op->dummy.buswidth;
315 spi_message_add_tail(&xfers[xferpos], &msg);
316 xferpos++;
317 totalxferlen += op->dummy.nbytes;
318 }
319
320 if (op->data.nbytes) {
321 if (op->data.dir == SPI_MEM_DATA_IN) {
322 xfers[xferpos].rx_buf = op->data.buf.in;
323 xfers[xferpos].rx_nbits = op->data.buswidth;
324 } else {
325 xfers[xferpos].tx_buf = op->data.buf.out;
326 xfers[xferpos].tx_nbits = op->data.buswidth;
327 }
328
329 xfers[xferpos].len = op->data.nbytes;
330 spi_message_add_tail(&xfers[xferpos], &msg);
331 xferpos++;
332 totalxferlen += op->data.nbytes;
333 }
334
335 ret = spi_sync(slave, &msg);
336
337 kfree(tmpbuf);
338
339 if (ret)
340 return ret;
341
342 if (msg.actual_length != totalxferlen)
343 return -EIO;
344 #else
345
346 if (op->data.nbytes) {
347 if (op->data.dir == SPI_MEM_DATA_IN)
348 rx_buf = op->data.buf.in;
349 else
350 tx_buf = op->data.buf.out;
351 }
352
353 op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
354
355 /*
356 * Avoid using malloc() here so that we can use this code in SPL where
357 * simple malloc may be used. That implementation does not allow free()
358 * so repeated calls to this code can exhaust the space.
359 *
360 * The value of op_len is small, since it does not include the actual
361 * data being sent, only the op-code and address. In fact, it should be
362 * possible to just use a small fixed value here instead of op_len.
363 */
364 u8 op_buf[op_len];
365
366 op_buf[pos++] = op->cmd.opcode;
367
368 if (op->addr.nbytes) {
369 for (i = 0; i < op->addr.nbytes; i++)
370 op_buf[pos + i] = op->addr.val >>
371 (8 * (op->addr.nbytes - i - 1));
372
373 pos += op->addr.nbytes;
374 }
375
376 if (op->dummy.nbytes)
377 memset(op_buf + pos, 0xff, op->dummy.nbytes);
378
379 /* 1st transfer: opcode + address + dummy cycles */
380 flag = SPI_XFER_BEGIN;
381 /* Make sure to set END bit if no tx or rx data messages follow */
382 if (!tx_buf && !rx_buf)
383 flag |= SPI_XFER_END;
384
385 ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
386 if (ret)
387 return ret;
388
389 /* 2nd transfer: rx or tx data path */
390 if (tx_buf || rx_buf) {
391 ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
392 rx_buf, SPI_XFER_END);
393 if (ret)
394 return ret;
395 }
396
397 spi_release_bus(slave);
398
399 for (i = 0; i < pos; i++)
400 debug("%02x ", op_buf[i]);
401 debug("| [%dB %s] ",
402 tx_buf || rx_buf ? op->data.nbytes : 0,
403 tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
404 for (i = 0; i < op->data.nbytes; i++)
405 debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
406 debug("[ret %d]\n", ret);
407
408 if (ret < 0)
409 return ret;
410 #endif /* __UBOOT__ */
411
412 return 0;
413 }
414 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
415
416 /**
417 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
418 * match controller limitations
419 * @slave: the SPI device
420 * @op: the operation to adjust
421 *
422 * Some controllers have FIFO limitations and must split a data transfer
423 * operation into multiple ones, others require a specific alignment for
424 * optimized accesses. This function allows SPI mem drivers to split a single
425 * operation into multiple sub-operations when required.
426 *
427 * Return: a negative error code if the controller can't properly adjust @op,
428 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
429 * can't be handled in a single step.
430 */
spi_mem_adjust_op_size(struct spi_slave * slave,struct spi_mem_op * op)431 int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
432 {
433 struct udevice *bus = slave->dev->parent;
434 struct dm_spi_ops *ops = spi_get_ops(bus);
435
436 if (ops->mem_ops && ops->mem_ops->adjust_op_size)
437 return ops->mem_ops->adjust_op_size(slave, op);
438
439 if (!ops->mem_ops || !ops->mem_ops->exec_op) {
440 unsigned int len;
441
442 len = sizeof(op->cmd.opcode) + op->addr.nbytes +
443 op->dummy.nbytes;
444 if (slave->max_write_size && len > slave->max_write_size)
445 return -EINVAL;
446
447 if (op->data.dir == SPI_MEM_DATA_IN) {
448 if (slave->max_read_size)
449 op->data.nbytes = min(op->data.nbytes,
450 slave->max_read_size);
451 } else if (slave->max_write_size) {
452 op->data.nbytes = min(op->data.nbytes,
453 slave->max_write_size - len);
454 }
455
456 if (!op->data.nbytes)
457 return -EINVAL;
458 }
459
460 return 0;
461 }
462 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
463
464 #ifndef __UBOOT__
to_spi_mem_drv(struct device_driver * drv)465 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
466 {
467 return container_of(drv, struct spi_mem_driver, spidrv.driver);
468 }
469
spi_mem_probe(struct spi_device * spi)470 static int spi_mem_probe(struct spi_device *spi)
471 {
472 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
473 struct spi_mem *mem;
474
475 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
476 if (!mem)
477 return -ENOMEM;
478
479 mem->spi = spi;
480 spi_set_drvdata(spi, mem);
481
482 return memdrv->probe(mem);
483 }
484
spi_mem_remove(struct spi_device * spi)485 static int spi_mem_remove(struct spi_device *spi)
486 {
487 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
488 struct spi_mem *mem = spi_get_drvdata(spi);
489
490 if (memdrv->remove)
491 return memdrv->remove(mem);
492
493 return 0;
494 }
495
spi_mem_shutdown(struct spi_device * spi)496 static void spi_mem_shutdown(struct spi_device *spi)
497 {
498 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
499 struct spi_mem *mem = spi_get_drvdata(spi);
500
501 if (memdrv->shutdown)
502 memdrv->shutdown(mem);
503 }
504
505 /**
506 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
507 * @memdrv: the SPI memory driver to register
508 * @owner: the owner of this driver
509 *
510 * Registers a SPI memory driver.
511 *
512 * Return: 0 in case of success, a negative error core otherwise.
513 */
514
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)515 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
516 struct module *owner)
517 {
518 memdrv->spidrv.probe = spi_mem_probe;
519 memdrv->spidrv.remove = spi_mem_remove;
520 memdrv->spidrv.shutdown = spi_mem_shutdown;
521
522 return __spi_register_driver(owner, &memdrv->spidrv);
523 }
524 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
525
526 /**
527 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
528 * @memdrv: the SPI memory driver to unregister
529 *
530 * Unregisters a SPI memory driver.
531 */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)532 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
533 {
534 spi_unregister_driver(&memdrv->spidrv);
535 }
536 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
537 #endif /* __UBOOT__ */
538