1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Author: Adrian Hunter
8 */
9
10 #include <log.h>
11 #include <dm/devres.h>
12 #include <linux/err.h>
13 #include "ubifs.h"
14
15 /*
16 * An orphan is an inode number whose inode node has been committed to the index
17 * with a link count of zero. That happens when an open file is deleted
18 * (unlinked) and then a commit is run. In the normal course of events the inode
19 * would be deleted when the file is closed. However in the case of an unclean
20 * unmount, orphans need to be accounted for. After an unclean unmount, the
21 * orphans' inodes must be deleted which means either scanning the entire index
22 * looking for them, or keeping a list on flash somewhere. This unit implements
23 * the latter approach.
24 *
25 * The orphan area is a fixed number of LEBs situated between the LPT area and
26 * the main area. The number of orphan area LEBs is specified when the file
27 * system is created. The minimum number is 1. The size of the orphan area
28 * should be so that it can hold the maximum number of orphans that are expected
29 * to ever exist at one time.
30 *
31 * The number of orphans that can fit in a LEB is:
32 *
33 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
34 *
35 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
36 *
37 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
38 * zero, the inode number is added to the rb-tree. It is removed from the tree
39 * when the inode is deleted. Any new orphans that are in the orphan tree when
40 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
41 * If the orphan area is full, it is consolidated to make space. There is
42 * always enough space because validation prevents the user from creating more
43 * than the maximum number of orphans allowed.
44 */
45
46 static int dbg_check_orphans(struct ubifs_info *c);
47
48 /**
49 * ubifs_add_orphan - add an orphan.
50 * @c: UBIFS file-system description object
51 * @inum: orphan inode number
52 *
53 * Add an orphan. This function is called when an inodes link count drops to
54 * zero.
55 */
ubifs_add_orphan(struct ubifs_info * c,ino_t inum)56 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
57 {
58 struct ubifs_orphan *orphan, *o;
59 struct rb_node **p, *parent = NULL;
60
61 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
62 if (!orphan)
63 return -ENOMEM;
64 orphan->inum = inum;
65 orphan->new = 1;
66
67 spin_lock(&c->orphan_lock);
68 if (c->tot_orphans >= c->max_orphans) {
69 spin_unlock(&c->orphan_lock);
70 kfree(orphan);
71 return -ENFILE;
72 }
73 p = &c->orph_tree.rb_node;
74 while (*p) {
75 parent = *p;
76 o = rb_entry(parent, struct ubifs_orphan, rb);
77 if (inum < o->inum)
78 p = &(*p)->rb_left;
79 else if (inum > o->inum)
80 p = &(*p)->rb_right;
81 else {
82 ubifs_err(c, "orphaned twice");
83 spin_unlock(&c->orphan_lock);
84 kfree(orphan);
85 return 0;
86 }
87 }
88 c->tot_orphans += 1;
89 c->new_orphans += 1;
90 rb_link_node(&orphan->rb, parent, p);
91 rb_insert_color(&orphan->rb, &c->orph_tree);
92 list_add_tail(&orphan->list, &c->orph_list);
93 list_add_tail(&orphan->new_list, &c->orph_new);
94 spin_unlock(&c->orphan_lock);
95 dbg_gen("ino %lu", (unsigned long)inum);
96 return 0;
97 }
98
99 /**
100 * ubifs_delete_orphan - delete an orphan.
101 * @c: UBIFS file-system description object
102 * @inum: orphan inode number
103 *
104 * Delete an orphan. This function is called when an inode is deleted.
105 */
ubifs_delete_orphan(struct ubifs_info * c,ino_t inum)106 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
107 {
108 struct ubifs_orphan *o;
109 struct rb_node *p;
110
111 spin_lock(&c->orphan_lock);
112 p = c->orph_tree.rb_node;
113 while (p) {
114 o = rb_entry(p, struct ubifs_orphan, rb);
115 if (inum < o->inum)
116 p = p->rb_left;
117 else if (inum > o->inum)
118 p = p->rb_right;
119 else {
120 if (o->del) {
121 spin_unlock(&c->orphan_lock);
122 dbg_gen("deleted twice ino %lu",
123 (unsigned long)inum);
124 return;
125 }
126 if (o->cmt) {
127 o->del = 1;
128 o->dnext = c->orph_dnext;
129 c->orph_dnext = o;
130 spin_unlock(&c->orphan_lock);
131 dbg_gen("delete later ino %lu",
132 (unsigned long)inum);
133 return;
134 }
135 rb_erase(p, &c->orph_tree);
136 list_del(&o->list);
137 c->tot_orphans -= 1;
138 if (o->new) {
139 list_del(&o->new_list);
140 c->new_orphans -= 1;
141 }
142 spin_unlock(&c->orphan_lock);
143 kfree(o);
144 dbg_gen("inum %lu", (unsigned long)inum);
145 return;
146 }
147 }
148 spin_unlock(&c->orphan_lock);
149 ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
150 dump_stack();
151 }
152
153 /**
154 * ubifs_orphan_start_commit - start commit of orphans.
155 * @c: UBIFS file-system description object
156 *
157 * Start commit of orphans.
158 */
ubifs_orphan_start_commit(struct ubifs_info * c)159 int ubifs_orphan_start_commit(struct ubifs_info *c)
160 {
161 struct ubifs_orphan *orphan, **last;
162
163 spin_lock(&c->orphan_lock);
164 last = &c->orph_cnext;
165 list_for_each_entry(orphan, &c->orph_new, new_list) {
166 ubifs_assert(orphan->new);
167 ubifs_assert(!orphan->cmt);
168 orphan->new = 0;
169 orphan->cmt = 1;
170 *last = orphan;
171 last = &orphan->cnext;
172 }
173 *last = NULL;
174 c->cmt_orphans = c->new_orphans;
175 c->new_orphans = 0;
176 dbg_cmt("%d orphans to commit", c->cmt_orphans);
177 INIT_LIST_HEAD(&c->orph_new);
178 if (c->tot_orphans == 0)
179 c->no_orphs = 1;
180 else
181 c->no_orphs = 0;
182 spin_unlock(&c->orphan_lock);
183 return 0;
184 }
185
186 /**
187 * avail_orphs - calculate available space.
188 * @c: UBIFS file-system description object
189 *
190 * This function returns the number of orphans that can be written in the
191 * available space.
192 */
avail_orphs(struct ubifs_info * c)193 static int avail_orphs(struct ubifs_info *c)
194 {
195 int avail_lebs, avail, gap;
196
197 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
198 avail = avail_lebs *
199 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
200 gap = c->leb_size - c->ohead_offs;
201 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
202 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
203 return avail;
204 }
205
206 /**
207 * tot_avail_orphs - calculate total space.
208 * @c: UBIFS file-system description object
209 *
210 * This function returns the number of orphans that can be written in half
211 * the total space. That leaves half the space for adding new orphans.
212 */
tot_avail_orphs(struct ubifs_info * c)213 static int tot_avail_orphs(struct ubifs_info *c)
214 {
215 int avail_lebs, avail;
216
217 avail_lebs = c->orph_lebs;
218 avail = avail_lebs *
219 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
220 return avail / 2;
221 }
222
223 /**
224 * do_write_orph_node - write a node to the orphan head.
225 * @c: UBIFS file-system description object
226 * @len: length of node
227 * @atomic: write atomically
228 *
229 * This function writes a node to the orphan head from the orphan buffer. If
230 * %atomic is not zero, then the write is done atomically. On success, %0 is
231 * returned, otherwise a negative error code is returned.
232 */
do_write_orph_node(struct ubifs_info * c,int len,int atomic)233 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
234 {
235 int err = 0;
236
237 if (atomic) {
238 ubifs_assert(c->ohead_offs == 0);
239 ubifs_prepare_node(c, c->orph_buf, len, 1);
240 len = ALIGN(len, c->min_io_size);
241 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
242 } else {
243 if (c->ohead_offs == 0) {
244 /* Ensure LEB has been unmapped */
245 err = ubifs_leb_unmap(c, c->ohead_lnum);
246 if (err)
247 return err;
248 }
249 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
250 c->ohead_offs);
251 }
252 return err;
253 }
254
255 /**
256 * write_orph_node - write an orphan node.
257 * @c: UBIFS file-system description object
258 * @atomic: write atomically
259 *
260 * This function builds an orphan node from the cnext list and writes it to the
261 * orphan head. On success, %0 is returned, otherwise a negative error code
262 * is returned.
263 */
write_orph_node(struct ubifs_info * c,int atomic)264 static int write_orph_node(struct ubifs_info *c, int atomic)
265 {
266 struct ubifs_orphan *orphan, *cnext;
267 struct ubifs_orph_node *orph;
268 int gap, err, len, cnt, i;
269
270 ubifs_assert(c->cmt_orphans > 0);
271 gap = c->leb_size - c->ohead_offs;
272 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
273 c->ohead_lnum += 1;
274 c->ohead_offs = 0;
275 gap = c->leb_size;
276 if (c->ohead_lnum > c->orph_last) {
277 /*
278 * We limit the number of orphans so that this should
279 * never happen.
280 */
281 ubifs_err(c, "out of space in orphan area");
282 return -EINVAL;
283 }
284 }
285 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
286 if (cnt > c->cmt_orphans)
287 cnt = c->cmt_orphans;
288 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
289 ubifs_assert(c->orph_buf);
290 orph = c->orph_buf;
291 orph->ch.node_type = UBIFS_ORPH_NODE;
292 spin_lock(&c->orphan_lock);
293 cnext = c->orph_cnext;
294 for (i = 0; i < cnt; i++) {
295 orphan = cnext;
296 ubifs_assert(orphan->cmt);
297 orph->inos[i] = cpu_to_le64(orphan->inum);
298 orphan->cmt = 0;
299 cnext = orphan->cnext;
300 orphan->cnext = NULL;
301 }
302 c->orph_cnext = cnext;
303 c->cmt_orphans -= cnt;
304 spin_unlock(&c->orphan_lock);
305 if (c->cmt_orphans)
306 orph->cmt_no = cpu_to_le64(c->cmt_no);
307 else
308 /* Mark the last node of the commit */
309 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
310 ubifs_assert(c->ohead_offs + len <= c->leb_size);
311 ubifs_assert(c->ohead_lnum >= c->orph_first);
312 ubifs_assert(c->ohead_lnum <= c->orph_last);
313 err = do_write_orph_node(c, len, atomic);
314 c->ohead_offs += ALIGN(len, c->min_io_size);
315 c->ohead_offs = ALIGN(c->ohead_offs, 8);
316 return err;
317 }
318
319 /**
320 * write_orph_nodes - write orphan nodes until there are no more to commit.
321 * @c: UBIFS file-system description object
322 * @atomic: write atomically
323 *
324 * This function writes orphan nodes for all the orphans to commit. On success,
325 * %0 is returned, otherwise a negative error code is returned.
326 */
write_orph_nodes(struct ubifs_info * c,int atomic)327 static int write_orph_nodes(struct ubifs_info *c, int atomic)
328 {
329 int err;
330
331 while (c->cmt_orphans > 0) {
332 err = write_orph_node(c, atomic);
333 if (err)
334 return err;
335 }
336 if (atomic) {
337 int lnum;
338
339 /* Unmap any unused LEBs after consolidation */
340 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
341 err = ubifs_leb_unmap(c, lnum);
342 if (err)
343 return err;
344 }
345 }
346 return 0;
347 }
348
349 /**
350 * consolidate - consolidate the orphan area.
351 * @c: UBIFS file-system description object
352 *
353 * This function enables consolidation by putting all the orphans into the list
354 * to commit. The list is in the order that the orphans were added, and the
355 * LEBs are written atomically in order, so at no time can orphans be lost by
356 * an unclean unmount.
357 *
358 * This function returns %0 on success and a negative error code on failure.
359 */
consolidate(struct ubifs_info * c)360 static int consolidate(struct ubifs_info *c)
361 {
362 int tot_avail = tot_avail_orphs(c), err = 0;
363
364 spin_lock(&c->orphan_lock);
365 dbg_cmt("there is space for %d orphans and there are %d",
366 tot_avail, c->tot_orphans);
367 if (c->tot_orphans - c->new_orphans <= tot_avail) {
368 struct ubifs_orphan *orphan, **last;
369 int cnt = 0;
370
371 /* Change the cnext list to include all non-new orphans */
372 last = &c->orph_cnext;
373 list_for_each_entry(orphan, &c->orph_list, list) {
374 if (orphan->new)
375 continue;
376 orphan->cmt = 1;
377 *last = orphan;
378 last = &orphan->cnext;
379 cnt += 1;
380 }
381 *last = NULL;
382 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
383 c->cmt_orphans = cnt;
384 c->ohead_lnum = c->orph_first;
385 c->ohead_offs = 0;
386 } else {
387 /*
388 * We limit the number of orphans so that this should
389 * never happen.
390 */
391 ubifs_err(c, "out of space in orphan area");
392 err = -EINVAL;
393 }
394 spin_unlock(&c->orphan_lock);
395 return err;
396 }
397
398 /**
399 * commit_orphans - commit orphans.
400 * @c: UBIFS file-system description object
401 *
402 * This function commits orphans to flash. On success, %0 is returned,
403 * otherwise a negative error code is returned.
404 */
commit_orphans(struct ubifs_info * c)405 static int commit_orphans(struct ubifs_info *c)
406 {
407 int avail, atomic = 0, err;
408
409 ubifs_assert(c->cmt_orphans > 0);
410 avail = avail_orphs(c);
411 if (avail < c->cmt_orphans) {
412 /* Not enough space to write new orphans, so consolidate */
413 err = consolidate(c);
414 if (err)
415 return err;
416 atomic = 1;
417 }
418 err = write_orph_nodes(c, atomic);
419 return err;
420 }
421
422 /**
423 * erase_deleted - erase the orphans marked for deletion.
424 * @c: UBIFS file-system description object
425 *
426 * During commit, the orphans being committed cannot be deleted, so they are
427 * marked for deletion and deleted by this function. Also, the recovery
428 * adds killed orphans to the deletion list, and therefore they are deleted
429 * here too.
430 */
erase_deleted(struct ubifs_info * c)431 static void erase_deleted(struct ubifs_info *c)
432 {
433 struct ubifs_orphan *orphan, *dnext;
434
435 spin_lock(&c->orphan_lock);
436 dnext = c->orph_dnext;
437 while (dnext) {
438 orphan = dnext;
439 dnext = orphan->dnext;
440 ubifs_assert(!orphan->new);
441 ubifs_assert(orphan->del);
442 rb_erase(&orphan->rb, &c->orph_tree);
443 list_del(&orphan->list);
444 c->tot_orphans -= 1;
445 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
446 kfree(orphan);
447 }
448 c->orph_dnext = NULL;
449 spin_unlock(&c->orphan_lock);
450 }
451
452 /**
453 * ubifs_orphan_end_commit - end commit of orphans.
454 * @c: UBIFS file-system description object
455 *
456 * End commit of orphans.
457 */
ubifs_orphan_end_commit(struct ubifs_info * c)458 int ubifs_orphan_end_commit(struct ubifs_info *c)
459 {
460 int err;
461
462 if (c->cmt_orphans != 0) {
463 err = commit_orphans(c);
464 if (err)
465 return err;
466 }
467 erase_deleted(c);
468 err = dbg_check_orphans(c);
469 return err;
470 }
471
472 /**
473 * ubifs_clear_orphans - erase all LEBs used for orphans.
474 * @c: UBIFS file-system description object
475 *
476 * If recovery is not required, then the orphans from the previous session
477 * are not needed. This function locates the LEBs used to record
478 * orphans, and un-maps them.
479 */
ubifs_clear_orphans(struct ubifs_info * c)480 int ubifs_clear_orphans(struct ubifs_info *c)
481 {
482 int lnum, err;
483
484 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
485 err = ubifs_leb_unmap(c, lnum);
486 if (err)
487 return err;
488 }
489 c->ohead_lnum = c->orph_first;
490 c->ohead_offs = 0;
491 return 0;
492 }
493
494 /**
495 * insert_dead_orphan - insert an orphan.
496 * @c: UBIFS file-system description object
497 * @inum: orphan inode number
498 *
499 * This function is a helper to the 'do_kill_orphans()' function. The orphan
500 * must be kept until the next commit, so it is added to the rb-tree and the
501 * deletion list.
502 */
insert_dead_orphan(struct ubifs_info * c,ino_t inum)503 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
504 {
505 struct ubifs_orphan *orphan, *o;
506 struct rb_node **p, *parent = NULL;
507
508 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
509 if (!orphan)
510 return -ENOMEM;
511 orphan->inum = inum;
512
513 p = &c->orph_tree.rb_node;
514 while (*p) {
515 parent = *p;
516 o = rb_entry(parent, struct ubifs_orphan, rb);
517 if (inum < o->inum)
518 p = &(*p)->rb_left;
519 else if (inum > o->inum)
520 p = &(*p)->rb_right;
521 else {
522 /* Already added - no problem */
523 kfree(orphan);
524 return 0;
525 }
526 }
527 c->tot_orphans += 1;
528 rb_link_node(&orphan->rb, parent, p);
529 rb_insert_color(&orphan->rb, &c->orph_tree);
530 list_add_tail(&orphan->list, &c->orph_list);
531 orphan->del = 1;
532 orphan->dnext = c->orph_dnext;
533 c->orph_dnext = orphan;
534 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
535 c->new_orphans, c->tot_orphans);
536 return 0;
537 }
538
539 /**
540 * do_kill_orphans - remove orphan inodes from the index.
541 * @c: UBIFS file-system description object
542 * @sleb: scanned LEB
543 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
544 * @outofdate: whether the LEB is out of date is returned here
545 * @last_flagged: whether the end orphan node is encountered
546 *
547 * This function is a helper to the 'kill_orphans()' function. It goes through
548 * every orphan node in a LEB and for every inode number recorded, removes
549 * all keys for that inode from the TNC.
550 */
do_kill_orphans(struct ubifs_info * c,struct ubifs_scan_leb * sleb,unsigned long long * last_cmt_no,int * outofdate,int * last_flagged)551 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
552 unsigned long long *last_cmt_no, int *outofdate,
553 int *last_flagged)
554 {
555 struct ubifs_scan_node *snod;
556 struct ubifs_orph_node *orph;
557 unsigned long long cmt_no;
558 ino_t inum;
559 int i, n, err, first = 1;
560
561 list_for_each_entry(snod, &sleb->nodes, list) {
562 if (snod->type != UBIFS_ORPH_NODE) {
563 ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
564 snod->type, sleb->lnum, snod->offs);
565 ubifs_dump_node(c, snod->node);
566 return -EINVAL;
567 }
568
569 orph = snod->node;
570
571 /* Check commit number */
572 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
573 /*
574 * The commit number on the master node may be less, because
575 * of a failed commit. If there are several failed commits in a
576 * row, the commit number written on orphan nodes will continue
577 * to increase (because the commit number is adjusted here) even
578 * though the commit number on the master node stays the same
579 * because the master node has not been re-written.
580 */
581 if (cmt_no > c->cmt_no)
582 c->cmt_no = cmt_no;
583 if (cmt_no < *last_cmt_no && *last_flagged) {
584 /*
585 * The last orphan node had a higher commit number and
586 * was flagged as the last written for that commit
587 * number. That makes this orphan node, out of date.
588 */
589 if (!first) {
590 ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
591 cmt_no, sleb->lnum, snod->offs);
592 ubifs_dump_node(c, snod->node);
593 return -EINVAL;
594 }
595 dbg_rcvry("out of date LEB %d", sleb->lnum);
596 *outofdate = 1;
597 return 0;
598 }
599
600 if (first)
601 first = 0;
602
603 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
604 for (i = 0; i < n; i++) {
605 inum = le64_to_cpu(orph->inos[i]);
606 dbg_rcvry("deleting orphaned inode %lu",
607 (unsigned long)inum);
608 err = ubifs_tnc_remove_ino(c, inum);
609 if (err)
610 return err;
611 err = insert_dead_orphan(c, inum);
612 if (err)
613 return err;
614 }
615
616 *last_cmt_no = cmt_no;
617 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
618 dbg_rcvry("last orph node for commit %llu at %d:%d",
619 cmt_no, sleb->lnum, snod->offs);
620 *last_flagged = 1;
621 } else
622 *last_flagged = 0;
623 }
624
625 return 0;
626 }
627
628 /**
629 * kill_orphans - remove all orphan inodes from the index.
630 * @c: UBIFS file-system description object
631 *
632 * If recovery is required, then orphan inodes recorded during the previous
633 * session (which ended with an unclean unmount) must be deleted from the index.
634 * This is done by updating the TNC, but since the index is not updated until
635 * the next commit, the LEBs where the orphan information is recorded are not
636 * erased until the next commit.
637 */
kill_orphans(struct ubifs_info * c)638 static int kill_orphans(struct ubifs_info *c)
639 {
640 unsigned long long last_cmt_no = 0;
641 int lnum, err = 0, outofdate = 0, last_flagged = 0;
642
643 c->ohead_lnum = c->orph_first;
644 c->ohead_offs = 0;
645 /* Check no-orphans flag and skip this if no orphans */
646 if (c->no_orphs) {
647 dbg_rcvry("no orphans");
648 return 0;
649 }
650 /*
651 * Orph nodes always start at c->orph_first and are written to each
652 * successive LEB in turn. Generally unused LEBs will have been unmapped
653 * but may contain out of date orphan nodes if the unmap didn't go
654 * through. In addition, the last orphan node written for each commit is
655 * marked (top bit of orph->cmt_no is set to 1). It is possible that
656 * there are orphan nodes from the next commit (i.e. the commit did not
657 * complete successfully). In that case, no orphans will have been lost
658 * due to the way that orphans are written, and any orphans added will
659 * be valid orphans anyway and so can be deleted.
660 */
661 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
662 struct ubifs_scan_leb *sleb;
663
664 dbg_rcvry("LEB %d", lnum);
665 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
666 if (IS_ERR(sleb)) {
667 if (PTR_ERR(sleb) == -EUCLEAN)
668 sleb = ubifs_recover_leb(c, lnum, 0,
669 c->sbuf, -1);
670 if (IS_ERR(sleb)) {
671 err = PTR_ERR(sleb);
672 break;
673 }
674 }
675 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
676 &last_flagged);
677 if (err || outofdate) {
678 ubifs_scan_destroy(sleb);
679 break;
680 }
681 if (sleb->endpt) {
682 c->ohead_lnum = lnum;
683 c->ohead_offs = sleb->endpt;
684 }
685 ubifs_scan_destroy(sleb);
686 }
687 return err;
688 }
689
690 /**
691 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
692 * @c: UBIFS file-system description object
693 * @unclean: indicates recovery from unclean unmount
694 * @read_only: indicates read only mount
695 *
696 * This function is called when mounting to erase orphans from the previous
697 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
698 * orphans are deleted.
699 */
ubifs_mount_orphans(struct ubifs_info * c,int unclean,int read_only)700 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
701 {
702 int err = 0;
703
704 c->max_orphans = tot_avail_orphs(c);
705
706 if (!read_only) {
707 c->orph_buf = vmalloc(c->leb_size);
708 if (!c->orph_buf)
709 return -ENOMEM;
710 }
711
712 if (unclean)
713 err = kill_orphans(c);
714 else if (!read_only)
715 err = ubifs_clear_orphans(c);
716
717 return err;
718 }
719
720 /*
721 * Everything below is related to debugging.
722 */
723
724 struct check_orphan {
725 struct rb_node rb;
726 ino_t inum;
727 };
728
729 struct check_info {
730 unsigned long last_ino;
731 unsigned long tot_inos;
732 unsigned long missing;
733 unsigned long long leaf_cnt;
734 struct ubifs_ino_node *node;
735 struct rb_root root;
736 };
737
dbg_find_orphan(struct ubifs_info * c,ino_t inum)738 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
739 {
740 struct ubifs_orphan *o;
741 struct rb_node *p;
742
743 spin_lock(&c->orphan_lock);
744 p = c->orph_tree.rb_node;
745 while (p) {
746 o = rb_entry(p, struct ubifs_orphan, rb);
747 if (inum < o->inum)
748 p = p->rb_left;
749 else if (inum > o->inum)
750 p = p->rb_right;
751 else {
752 spin_unlock(&c->orphan_lock);
753 return 1;
754 }
755 }
756 spin_unlock(&c->orphan_lock);
757 return 0;
758 }
759
dbg_ins_check_orphan(struct rb_root * root,ino_t inum)760 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
761 {
762 struct check_orphan *orphan, *o;
763 struct rb_node **p, *parent = NULL;
764
765 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
766 if (!orphan)
767 return -ENOMEM;
768 orphan->inum = inum;
769
770 p = &root->rb_node;
771 while (*p) {
772 parent = *p;
773 o = rb_entry(parent, struct check_orphan, rb);
774 if (inum < o->inum)
775 p = &(*p)->rb_left;
776 else if (inum > o->inum)
777 p = &(*p)->rb_right;
778 else {
779 kfree(orphan);
780 return 0;
781 }
782 }
783 rb_link_node(&orphan->rb, parent, p);
784 rb_insert_color(&orphan->rb, root);
785 return 0;
786 }
787
dbg_find_check_orphan(struct rb_root * root,ino_t inum)788 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
789 {
790 struct check_orphan *o;
791 struct rb_node *p;
792
793 p = root->rb_node;
794 while (p) {
795 o = rb_entry(p, struct check_orphan, rb);
796 if (inum < o->inum)
797 p = p->rb_left;
798 else if (inum > o->inum)
799 p = p->rb_right;
800 else
801 return 1;
802 }
803 return 0;
804 }
805
dbg_free_check_tree(struct rb_root * root)806 static void dbg_free_check_tree(struct rb_root *root)
807 {
808 struct check_orphan *o, *n;
809
810 rbtree_postorder_for_each_entry_safe(o, n, root, rb)
811 kfree(o);
812 }
813
dbg_orphan_check(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)814 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
815 void *priv)
816 {
817 struct check_info *ci = priv;
818 ino_t inum;
819 int err;
820
821 inum = key_inum(c, &zbr->key);
822 if (inum != ci->last_ino) {
823 /* Lowest node type is the inode node, so it comes first */
824 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
825 ubifs_err(c, "found orphan node ino %lu, type %d",
826 (unsigned long)inum, key_type(c, &zbr->key));
827 ci->last_ino = inum;
828 ci->tot_inos += 1;
829 err = ubifs_tnc_read_node(c, zbr, ci->node);
830 if (err) {
831 ubifs_err(c, "node read failed, error %d", err);
832 return err;
833 }
834 if (ci->node->nlink == 0)
835 /* Must be recorded as an orphan */
836 if (!dbg_find_check_orphan(&ci->root, inum) &&
837 !dbg_find_orphan(c, inum)) {
838 ubifs_err(c, "missing orphan, ino %lu",
839 (unsigned long)inum);
840 ci->missing += 1;
841 }
842 }
843 ci->leaf_cnt += 1;
844 return 0;
845 }
846
dbg_read_orphans(struct check_info * ci,struct ubifs_scan_leb * sleb)847 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
848 {
849 struct ubifs_scan_node *snod;
850 struct ubifs_orph_node *orph;
851 ino_t inum;
852 int i, n, err;
853
854 list_for_each_entry(snod, &sleb->nodes, list) {
855 cond_resched();
856 if (snod->type != UBIFS_ORPH_NODE)
857 continue;
858 orph = snod->node;
859 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
860 for (i = 0; i < n; i++) {
861 inum = le64_to_cpu(orph->inos[i]);
862 err = dbg_ins_check_orphan(&ci->root, inum);
863 if (err)
864 return err;
865 }
866 }
867 return 0;
868 }
869
dbg_scan_orphans(struct ubifs_info * c,struct check_info * ci)870 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
871 {
872 int lnum, err = 0;
873 void *buf;
874
875 /* Check no-orphans flag and skip this if no orphans */
876 if (c->no_orphs)
877 return 0;
878
879 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
880 if (!buf) {
881 ubifs_err(c, "cannot allocate memory to check orphans");
882 return 0;
883 }
884
885 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
886 struct ubifs_scan_leb *sleb;
887
888 sleb = ubifs_scan(c, lnum, 0, buf, 0);
889 if (IS_ERR(sleb)) {
890 err = PTR_ERR(sleb);
891 break;
892 }
893
894 err = dbg_read_orphans(ci, sleb);
895 ubifs_scan_destroy(sleb);
896 if (err)
897 break;
898 }
899
900 vfree(buf);
901 return err;
902 }
903
dbg_check_orphans(struct ubifs_info * c)904 static int dbg_check_orphans(struct ubifs_info *c)
905 {
906 struct check_info ci;
907 int err;
908
909 if (!dbg_is_chk_orph(c))
910 return 0;
911
912 ci.last_ino = 0;
913 ci.tot_inos = 0;
914 ci.missing = 0;
915 ci.leaf_cnt = 0;
916 ci.root = RB_ROOT;
917 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
918 if (!ci.node) {
919 ubifs_err(c, "out of memory");
920 return -ENOMEM;
921 }
922
923 err = dbg_scan_orphans(c, &ci);
924 if (err)
925 goto out;
926
927 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
928 if (err) {
929 ubifs_err(c, "cannot scan TNC, error %d", err);
930 goto out;
931 }
932
933 if (ci.missing) {
934 ubifs_err(c, "%lu missing orphan(s)", ci.missing);
935 err = -EINVAL;
936 goto out;
937 }
938
939 dbg_cmt("last inode number is %lu", ci.last_ino);
940 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
941 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
942
943 out:
944 dbg_free_check_tree(&ci.root);
945 kfree(ci.node);
946 return err;
947 }
948