1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author:
7 * Peter Pan <peterpandong@micron.com>
8 * Boris Brezillon <boris.brezillon@bootlin.com>
9 */
10
11 #ifndef __UBOOT_SPI_MEM_H
12 #define __UBOOT_SPI_MEM_H
13
14 struct udevice;
15
16 #define SPI_MEM_OP_CMD(__opcode, __buswidth) \
17 { \
18 .buswidth = __buswidth, \
19 .opcode = __opcode, \
20 }
21
22 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \
23 { \
24 .nbytes = __nbytes, \
25 .val = __val, \
26 .buswidth = __buswidth, \
27 }
28
29 #define SPI_MEM_OP_NO_ADDR { }
30
31 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \
32 { \
33 .nbytes = __nbytes, \
34 .buswidth = __buswidth, \
35 }
36
37 #define SPI_MEM_OP_NO_DUMMY { }
38
39 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \
40 { \
41 .dir = SPI_MEM_DATA_IN, \
42 .nbytes = __nbytes, \
43 .buf.in = __buf, \
44 .buswidth = __buswidth, \
45 }
46
47 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \
48 { \
49 .dir = SPI_MEM_DATA_OUT, \
50 .nbytes = __nbytes, \
51 .buf.out = __buf, \
52 .buswidth = __buswidth, \
53 }
54
55 #define SPI_MEM_OP_NO_DATA { }
56
57 /**
58 * enum spi_mem_data_dir - describes the direction of a SPI memory data
59 * transfer from the controller perspective
60 * @SPI_MEM_NO_DATA: no data transferred
61 * @SPI_MEM_DATA_IN: data coming from the SPI memory
62 * @SPI_MEM_DATA_OUT: data sent the SPI memory
63 */
64 enum spi_mem_data_dir {
65 SPI_MEM_NO_DATA,
66 SPI_MEM_DATA_IN,
67 SPI_MEM_DATA_OUT,
68 };
69
70 /**
71 * struct spi_mem_op - describes a SPI memory operation
72 * @cmd.buswidth: number of IO lines used to transmit the command
73 * @cmd.opcode: operation opcode
74 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
75 * does not need to send an address
76 * @addr.buswidth: number of IO lines used to transmit the address cycles
77 * @addr.val: address value. This value is always sent MSB first on the bus.
78 * Note that only @addr.nbytes are taken into account in this
79 * address value, so users should make sure the value fits in the
80 * assigned number of bytes.
81 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
82 * be zero if the operation does not require dummy bytes
83 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
84 * @data.buswidth: number of IO lanes used to send/receive the data
85 * @data.dir: direction of the transfer
86 * @data.buf.in: input buffer
87 * @data.buf.out: output buffer
88 */
89 struct spi_mem_op {
90 struct {
91 u8 buswidth;
92 u8 opcode;
93 } cmd;
94
95 struct {
96 u8 nbytes;
97 u8 buswidth;
98 u64 val;
99 } addr;
100
101 struct {
102 u8 nbytes;
103 u8 buswidth;
104 } dummy;
105
106 struct {
107 u8 buswidth;
108 enum spi_mem_data_dir dir;
109 unsigned int nbytes;
110 /* buf.{in,out} must be DMA-able. */
111 union {
112 void *in;
113 const void *out;
114 } buf;
115 } data;
116 };
117
118 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \
119 { \
120 .cmd = __cmd, \
121 .addr = __addr, \
122 .dummy = __dummy, \
123 .data = __data, \
124 }
125
126 #ifndef __UBOOT__
127 /**
128 * struct spi_mem - describes a SPI memory device
129 * @spi: the underlying SPI device
130 * @drvpriv: spi_mem_driver private data
131 *
132 * Extra information that describe the SPI memory device and may be needed by
133 * the controller to properly handle this device should be placed here.
134 *
135 * One example would be the device size since some controller expose their SPI
136 * mem devices through a io-mapped region.
137 */
138 struct spi_mem {
139 struct udevice *dev;
140 void *drvpriv;
141 };
142
143 /**
144 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
145 * device
146 * @mem: memory device
147 * @data: data to attach to the memory device
148 */
spi_mem_set_drvdata(struct spi_mem * mem,void * data)149 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
150 {
151 mem->drvpriv = data;
152 }
153
154 /**
155 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
156 * device
157 * @mem: memory device
158 *
159 * Return: the data attached to the mem device.
160 */
spi_mem_get_drvdata(struct spi_mem * mem)161 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
162 {
163 return mem->drvpriv;
164 }
165 #endif /* __UBOOT__ */
166
167 /**
168 * struct spi_controller_mem_ops - SPI memory operations
169 * @adjust_op_size: shrink the data xfer of an operation to match controller's
170 * limitations (can be alignment of max RX/TX size
171 * limitations)
172 * @supports_op: check if an operation is supported by the controller
173 * @exec_op: execute a SPI memory operation
174 *
175 * This interface should be implemented by SPI controllers providing an
176 * high-level interface to execute SPI memory operation, which is usually the
177 * case for QSPI controllers.
178 */
179 struct spi_controller_mem_ops {
180 int (*adjust_op_size)(struct spi_slave *slave, struct spi_mem_op *op);
181 bool (*supports_op)(struct spi_slave *slave,
182 const struct spi_mem_op *op);
183 int (*exec_op)(struct spi_slave *slave,
184 const struct spi_mem_op *op);
185 };
186
187 #ifndef __UBOOT__
188 /**
189 * struct spi_mem_driver - SPI memory driver
190 * @spidrv: inherit from a SPI driver
191 * @probe: probe a SPI memory. Usually where detection/initialization takes
192 * place
193 * @remove: remove a SPI memory
194 * @shutdown: take appropriate action when the system is shutdown
195 *
196 * This is just a thin wrapper around a spi_driver. The core takes care of
197 * allocating the spi_mem object and forwarding the probe/remove/shutdown
198 * request to the spi_mem_driver. The reason we use this wrapper is because
199 * we might have to stuff more information into the spi_mem struct to let
200 * SPI controllers know more about the SPI memory they interact with, and
201 * having this intermediate layer allows us to do that without adding more
202 * useless fields to the spi_device object.
203 */
204 struct spi_mem_driver {
205 struct spi_driver spidrv;
206 int (*probe)(struct spi_mem *mem);
207 int (*remove)(struct spi_mem *mem);
208 void (*shutdown)(struct spi_mem *mem);
209 };
210
211 #if IS_ENABLED(CONFIG_SPI_MEM)
212 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
213 const struct spi_mem_op *op,
214 struct sg_table *sg);
215
216 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
217 const struct spi_mem_op *op,
218 struct sg_table *sg);
219 #else
220 static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)221 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
222 const struct spi_mem_op *op,
223 struct sg_table *sg)
224 {
225 return -ENOTSUPP;
226 }
227
228 static inline void
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)229 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
230 const struct spi_mem_op *op,
231 struct sg_table *sg)
232 {
233 }
234 #endif /* CONFIG_SPI_MEM */
235 #endif /* __UBOOT__ */
236
237 int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op);
238
239 bool spi_mem_supports_op(struct spi_slave *slave, const struct spi_mem_op *op);
240
241 int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op);
242
243 bool spi_mem_default_supports_op(struct spi_slave *mem,
244 const struct spi_mem_op *op);
245
246 #ifndef __UBOOT__
247 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
248 struct module *owner);
249
250 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
251
252 #define spi_mem_driver_register(__drv) \
253 spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
254
255 #define module_spi_mem_driver(__drv) \
256 module_driver(__drv, spi_mem_driver_register, \
257 spi_mem_driver_unregister)
258 #endif
259
260 #endif /* __LINUX_SPI_MEM_H */
261