1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright (C) 2016 The Android Open Source Project
4 */
5
6 #include "avb_util.h"
7 #include <log.h>
8 #include <malloc.h>
9
10 #include <stdarg.h>
11
avb_be32toh(uint32_t in)12 uint32_t avb_be32toh(uint32_t in) {
13 uint8_t* d = (uint8_t*)∈
14 uint32_t ret;
15 ret = ((uint32_t)d[0]) << 24;
16 ret |= ((uint32_t)d[1]) << 16;
17 ret |= ((uint32_t)d[2]) << 8;
18 ret |= ((uint32_t)d[3]);
19 return ret;
20 }
21
avb_be64toh(uint64_t in)22 uint64_t avb_be64toh(uint64_t in) {
23 uint8_t* d = (uint8_t*)∈
24 uint64_t ret;
25 ret = ((uint64_t)d[0]) << 56;
26 ret |= ((uint64_t)d[1]) << 48;
27 ret |= ((uint64_t)d[2]) << 40;
28 ret |= ((uint64_t)d[3]) << 32;
29 ret |= ((uint64_t)d[4]) << 24;
30 ret |= ((uint64_t)d[5]) << 16;
31 ret |= ((uint64_t)d[6]) << 8;
32 ret |= ((uint64_t)d[7]);
33 return ret;
34 }
35
36 /* Converts a 32-bit unsigned integer from host to big-endian byte order. */
avb_htobe32(uint32_t in)37 uint32_t avb_htobe32(uint32_t in) {
38 union {
39 uint32_t word;
40 uint8_t bytes[4];
41 } ret;
42 ret.bytes[0] = (in >> 24) & 0xff;
43 ret.bytes[1] = (in >> 16) & 0xff;
44 ret.bytes[2] = (in >> 8) & 0xff;
45 ret.bytes[3] = in & 0xff;
46 return ret.word;
47 }
48
49 /* Converts a 64-bit unsigned integer from host to big-endian byte order. */
avb_htobe64(uint64_t in)50 uint64_t avb_htobe64(uint64_t in) {
51 union {
52 uint64_t word;
53 uint8_t bytes[8];
54 } ret;
55 ret.bytes[0] = (in >> 56) & 0xff;
56 ret.bytes[1] = (in >> 48) & 0xff;
57 ret.bytes[2] = (in >> 40) & 0xff;
58 ret.bytes[3] = (in >> 32) & 0xff;
59 ret.bytes[4] = (in >> 24) & 0xff;
60 ret.bytes[5] = (in >> 16) & 0xff;
61 ret.bytes[6] = (in >> 8) & 0xff;
62 ret.bytes[7] = in & 0xff;
63 return ret.word;
64 }
65
avb_safe_memcmp(const void * s1,const void * s2,size_t n)66 int avb_safe_memcmp(const void* s1, const void* s2, size_t n) {
67 const unsigned char* us1 = s1;
68 const unsigned char* us2 = s2;
69 int result = 0;
70
71 if (0 == n) {
72 return 0;
73 }
74
75 /*
76 * Code snippet without data-dependent branch due to Nate Lawson
77 * (nate@root.org) of Root Labs.
78 */
79 while (n--) {
80 result |= *us1++ ^ *us2++;
81 }
82
83 return result != 0;
84 }
85
avb_safe_add_to(uint64_t * value,uint64_t value_to_add)86 bool avb_safe_add_to(uint64_t* value, uint64_t value_to_add) {
87 uint64_t original_value;
88
89 avb_assert(value != NULL);
90
91 original_value = *value;
92
93 *value += value_to_add;
94 if (*value < original_value) {
95 avb_error("Overflow when adding values.\n");
96 return false;
97 }
98
99 return true;
100 }
101
avb_safe_add(uint64_t * out_result,uint64_t a,uint64_t b)102 bool avb_safe_add(uint64_t* out_result, uint64_t a, uint64_t b) {
103 uint64_t dummy;
104 if (out_result == NULL) {
105 out_result = &dummy;
106 }
107 *out_result = a;
108 return avb_safe_add_to(out_result, b);
109 }
110
avb_validate_utf8(const uint8_t * data,size_t num_bytes)111 bool avb_validate_utf8(const uint8_t* data, size_t num_bytes) {
112 size_t n;
113 unsigned int num_cc;
114
115 for (n = 0, num_cc = 0; n < num_bytes; n++) {
116 uint8_t c = data[n];
117
118 if (num_cc > 0) {
119 if ((c & (0x80 | 0x40)) == 0x80) {
120 /* 10xx xxxx */
121 } else {
122 goto fail;
123 }
124 num_cc--;
125 } else {
126 if (c < 0x80) {
127 num_cc = 0;
128 } else if ((c & (0x80 | 0x40 | 0x20)) == (0x80 | 0x40)) {
129 /* 110x xxxx */
130 num_cc = 1;
131 } else if ((c & (0x80 | 0x40 | 0x20 | 0x10)) == (0x80 | 0x40 | 0x20)) {
132 /* 1110 xxxx */
133 num_cc = 2;
134 } else if ((c & (0x80 | 0x40 | 0x20 | 0x10 | 0x08)) ==
135 (0x80 | 0x40 | 0x20 | 0x10)) {
136 /* 1111 0xxx */
137 num_cc = 3;
138 } else {
139 goto fail;
140 }
141 }
142 }
143
144 if (num_cc != 0) {
145 goto fail;
146 }
147
148 return true;
149
150 fail:
151 return false;
152 }
153
avb_str_concat(char * buf,size_t buf_size,const char * str1,size_t str1_len,const char * str2,size_t str2_len)154 bool avb_str_concat(char* buf,
155 size_t buf_size,
156 const char* str1,
157 size_t str1_len,
158 const char* str2,
159 size_t str2_len) {
160 uint64_t combined_len;
161
162 if (!avb_safe_add(&combined_len, str1_len, str2_len)) {
163 avb_error("Overflow when adding string sizes.\n");
164 return false;
165 }
166
167 if (combined_len > buf_size - 1) {
168 avb_error("Insufficient buffer space.\n");
169 return false;
170 }
171
172 avb_memcpy(buf, str1, str1_len);
173 avb_memcpy(buf + str1_len, str2, str2_len);
174 buf[combined_len] = '\0';
175
176 return true;
177 }
178
avb_malloc(size_t size)179 void* avb_malloc(size_t size) {
180 void* ret = avb_malloc_(size);
181 if (ret == NULL) {
182 avb_error("Failed to allocate memory.\n");
183 return NULL;
184 }
185 return ret;
186 }
187
avb_calloc(size_t size)188 void* avb_calloc(size_t size) {
189 void* ret = avb_malloc(size);
190 if (ret == NULL) {
191 return NULL;
192 }
193
194 avb_memset(ret, '\0', size);
195 return ret;
196 }
197
avb_strdup(const char * str)198 char* avb_strdup(const char* str) {
199 size_t len = avb_strlen(str);
200 char* ret = avb_malloc(len + 1);
201 if (ret == NULL) {
202 return NULL;
203 }
204
205 avb_memcpy(ret, str, len);
206 ret[len] = '\0';
207
208 return ret;
209 }
210
avb_strstr(const char * haystack,const char * needle)211 const char* avb_strstr(const char* haystack, const char* needle) {
212 size_t n, m;
213
214 /* Look through |haystack| and check if the first character of
215 * |needle| matches. If so, check the rest of |needle|.
216 */
217 for (n = 0; haystack[n] != '\0'; n++) {
218 if (haystack[n] != needle[0]) {
219 continue;
220 }
221
222 for (m = 1;; m++) {
223 if (needle[m] == '\0') {
224 return haystack + n;
225 }
226
227 if (haystack[n + m] != needle[m]) {
228 break;
229 }
230 }
231 }
232
233 return NULL;
234 }
235
avb_strv_find_str(const char * const * strings,const char * str,size_t str_size)236 const char* avb_strv_find_str(const char* const* strings,
237 const char* str,
238 size_t str_size) {
239 size_t n;
240 for (n = 0; strings[n] != NULL; n++) {
241 if (avb_strlen(strings[n]) == str_size &&
242 avb_memcmp(strings[n], str, str_size) == 0) {
243 return strings[n];
244 }
245 }
246 return NULL;
247 }
248
avb_replace(const char * str,const char * search,const char * replace)249 char* avb_replace(const char* str, const char* search, const char* replace) {
250 char* ret = NULL;
251 size_t ret_len = 0;
252 size_t search_len, replace_len;
253 const char* str_after_last_replace;
254
255 search_len = avb_strlen(search);
256 replace_len = avb_strlen(replace);
257
258 str_after_last_replace = str;
259 while (*str != '\0') {
260 const char* s;
261 size_t num_before;
262 size_t num_new;
263
264 s = avb_strstr(str, search);
265 if (s == NULL) {
266 break;
267 }
268
269 num_before = s - str;
270
271 if (ret == NULL) {
272 num_new = num_before + replace_len + 1;
273 ret = avb_malloc(num_new);
274 if (ret == NULL) {
275 goto out;
276 }
277 avb_memcpy(ret, str, num_before);
278 avb_memcpy(ret + num_before, replace, replace_len);
279 ret[num_new - 1] = '\0';
280 ret_len = num_new - 1;
281 } else {
282 char* new_str;
283 num_new = ret_len + num_before + replace_len + 1;
284 new_str = avb_malloc(num_new);
285 if (new_str == NULL) {
286 goto out;
287 }
288 avb_memcpy(new_str, ret, ret_len);
289 avb_memcpy(new_str + ret_len, str, num_before);
290 avb_memcpy(new_str + ret_len + num_before, replace, replace_len);
291 new_str[num_new - 1] = '\0';
292 avb_free(ret);
293 ret = new_str;
294 ret_len = num_new - 1;
295 }
296
297 str = s + search_len;
298 str_after_last_replace = str;
299 }
300
301 if (ret == NULL) {
302 ret = avb_strdup(str_after_last_replace);
303 if (ret == NULL) {
304 goto out;
305 }
306 } else {
307 size_t num_remaining = avb_strlen(str_after_last_replace);
308 size_t num_new = ret_len + num_remaining + 1;
309 char* new_str = avb_malloc(num_new);
310 if (new_str == NULL) {
311 goto out;
312 }
313 avb_memcpy(new_str, ret, ret_len);
314 avb_memcpy(new_str + ret_len, str_after_last_replace, num_remaining);
315 new_str[num_new - 1] = '\0';
316 avb_free(ret);
317 ret = new_str;
318 ret_len = num_new - 1;
319 }
320
321 out:
322 return ret;
323 }
324
325 /* We only support a limited amount of strings in avb_strdupv(). */
326 #define AVB_STRDUPV_MAX_NUM_STRINGS 32
327
avb_strdupv(const char * str,...)328 char* avb_strdupv(const char* str, ...) {
329 va_list ap;
330 const char* strings[AVB_STRDUPV_MAX_NUM_STRINGS];
331 size_t lengths[AVB_STRDUPV_MAX_NUM_STRINGS];
332 size_t num_strings, n;
333 uint64_t total_length;
334 char *ret = NULL, *dest;
335
336 num_strings = 0;
337 total_length = 0;
338 va_start(ap, str);
339 do {
340 size_t str_len = avb_strlen(str);
341 strings[num_strings] = str;
342 lengths[num_strings] = str_len;
343 if (!avb_safe_add_to(&total_length, str_len)) {
344 avb_fatal("Overflow while determining total length.\n");
345 break;
346 }
347 num_strings++;
348 if (num_strings == AVB_STRDUPV_MAX_NUM_STRINGS) {
349 avb_fatal("Too many strings passed.\n");
350 break;
351 }
352 str = va_arg(ap, const char*);
353 } while (str != NULL);
354 va_end(ap);
355
356 ret = avb_malloc(total_length + 1);
357 if (ret == NULL) {
358 goto out;
359 }
360
361 dest = ret;
362 for (n = 0; n < num_strings; n++) {
363 avb_memcpy(dest, strings[n], lengths[n]);
364 dest += lengths[n];
365 }
366 *dest = '\0';
367 avb_assert(dest == ret + total_length);
368
369 out:
370 return ret;
371 }
372
avb_basename(const char * str)373 const char* avb_basename(const char* str) {
374 int64_t n;
375 size_t len;
376
377 len = avb_strlen(str);
378 if (len >= 2) {
379 for (n = len - 2; n >= 0; n--) {
380 if (str[n] == '/') {
381 return str + n + 1;
382 }
383 }
384 }
385 return str;
386 }
387
avb_uppercase(char * str)388 void avb_uppercase(char* str) {
389 size_t i;
390 for (i = 0; str[i] != '\0'; ++i) {
391 if (str[i] <= 0x7A && str[i] >= 0x61) {
392 str[i] -= 0x20;
393 }
394 }
395 }
396
avb_bin2hex(const uint8_t * data,size_t data_len)397 char* avb_bin2hex(const uint8_t* data, size_t data_len) {
398 const char hex_digits[17] = "0123456789abcdef";
399 char* hex_data;
400 size_t n;
401
402 hex_data = avb_malloc(data_len * 2 + 1);
403 if (hex_data == NULL) {
404 return NULL;
405 }
406
407 for (n = 0; n < data_len; n++) {
408 hex_data[n * 2] = hex_digits[data[n] >> 4];
409 hex_data[n * 2 + 1] = hex_digits[data[n] & 0x0f];
410 }
411 hex_data[n * 2] = '\0';
412 return hex_data;
413 }
414