1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2013, Google Inc.
4  */
5 
6 #ifndef USE_HOSTCC
7 #include <common.h>
8 #include <fdtdec.h>
9 #include <log.h>
10 #include <asm/types.h>
11 #include <asm/byteorder.h>
12 #include <linux/errno.h>
13 #include <asm/types.h>
14 #include <asm/unaligned.h>
15 #else
16 #include "fdt_host.h"
17 #include "mkimage.h"
18 #include <fdt_support.h>
19 #endif
20 #include <u-boot/rsa.h>
21 #include <u-boot/rsa-mod-exp.h>
22 
23 #define UINT64_MULT32(v, multby)  (((uint64_t)(v)) * ((uint32_t)(multby)))
24 
25 #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
26 #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))
27 
fdt64_to_cpup(const void * p)28 static inline uint64_t fdt64_to_cpup(const void *p)
29 {
30 	fdt64_t w;
31 
32 	memcpy(&w, p, sizeof(w));
33 	return fdt64_to_cpu(w);
34 }
35 
36 /* Default public exponent for backward compatibility */
37 #define RSA_DEFAULT_PUBEXP	65537
38 
39 /**
40  * subtract_modulus() - subtract modulus from the given value
41  *
42  * @key:	Key containing modulus to subtract
43  * @num:	Number to subtract modulus from, as little endian word array
44  */
subtract_modulus(const struct rsa_public_key * key,uint32_t num[])45 static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
46 {
47 	int64_t acc = 0;
48 	uint i;
49 
50 	for (i = 0; i < key->len; i++) {
51 		acc += (uint64_t)num[i] - key->modulus[i];
52 		num[i] = (uint32_t)acc;
53 		acc >>= 32;
54 	}
55 }
56 
57 /**
58  * greater_equal_modulus() - check if a value is >= modulus
59  *
60  * @key:	Key containing modulus to check
61  * @num:	Number to check against modulus, as little endian word array
62  * @return 0 if num < modulus, 1 if num >= modulus
63  */
greater_equal_modulus(const struct rsa_public_key * key,uint32_t num[])64 static int greater_equal_modulus(const struct rsa_public_key *key,
65 				 uint32_t num[])
66 {
67 	int i;
68 
69 	for (i = (int)key->len - 1; i >= 0; i--) {
70 		if (num[i] < key->modulus[i])
71 			return 0;
72 		if (num[i] > key->modulus[i])
73 			return 1;
74 	}
75 
76 	return 1;  /* equal */
77 }
78 
79 /**
80  * montgomery_mul_add_step() - Perform montgomery multiply-add step
81  *
82  * Operation: montgomery result[] += a * b[] / n0inv % modulus
83  *
84  * @key:	RSA key
85  * @result:	Place to put result, as little endian word array
86  * @a:		Multiplier
87  * @b:		Multiplicand, as little endian word array
88  */
montgomery_mul_add_step(const struct rsa_public_key * key,uint32_t result[],const uint32_t a,const uint32_t b[])89 static void montgomery_mul_add_step(const struct rsa_public_key *key,
90 		uint32_t result[], const uint32_t a, const uint32_t b[])
91 {
92 	uint64_t acc_a, acc_b;
93 	uint32_t d0;
94 	uint i;
95 
96 	acc_a = (uint64_t)a * b[0] + result[0];
97 	d0 = (uint32_t)acc_a * key->n0inv;
98 	acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
99 	for (i = 1; i < key->len; i++) {
100 		acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
101 		acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
102 				(uint32_t)acc_a;
103 		result[i - 1] = (uint32_t)acc_b;
104 	}
105 
106 	acc_a = (acc_a >> 32) + (acc_b >> 32);
107 
108 	result[i - 1] = (uint32_t)acc_a;
109 
110 	if (acc_a >> 32)
111 		subtract_modulus(key, result);
112 }
113 
114 /**
115  * montgomery_mul() - Perform montgomery mutitply
116  *
117  * Operation: montgomery result[] = a[] * b[] / n0inv % modulus
118  *
119  * @key:	RSA key
120  * @result:	Place to put result, as little endian word array
121  * @a:		Multiplier, as little endian word array
122  * @b:		Multiplicand, as little endian word array
123  */
montgomery_mul(const struct rsa_public_key * key,uint32_t result[],uint32_t a[],const uint32_t b[])124 static void montgomery_mul(const struct rsa_public_key *key,
125 		uint32_t result[], uint32_t a[], const uint32_t b[])
126 {
127 	uint i;
128 
129 	for (i = 0; i < key->len; ++i)
130 		result[i] = 0;
131 	for (i = 0; i < key->len; ++i)
132 		montgomery_mul_add_step(key, result, a[i], b);
133 }
134 
135 /**
136  * num_pub_exponent_bits() - Number of bits in the public exponent
137  *
138  * @key:	RSA key
139  * @num_bits:	Storage for the number of public exponent bits
140  */
num_public_exponent_bits(const struct rsa_public_key * key,int * num_bits)141 static int num_public_exponent_bits(const struct rsa_public_key *key,
142 		int *num_bits)
143 {
144 	uint64_t exponent;
145 	int exponent_bits;
146 	const uint max_bits = (sizeof(exponent) * 8);
147 
148 	exponent = key->exponent;
149 	exponent_bits = 0;
150 
151 	if (!exponent) {
152 		*num_bits = exponent_bits;
153 		return 0;
154 	}
155 
156 	for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
157 		if (!(exponent >>= 1)) {
158 			*num_bits = exponent_bits;
159 			return 0;
160 		}
161 
162 	return -EINVAL;
163 }
164 
165 /**
166  * is_public_exponent_bit_set() - Check if a bit in the public exponent is set
167  *
168  * @key:	RSA key
169  * @pos:	The bit position to check
170  */
is_public_exponent_bit_set(const struct rsa_public_key * key,int pos)171 static int is_public_exponent_bit_set(const struct rsa_public_key *key,
172 		int pos)
173 {
174 	return key->exponent & (1ULL << pos);
175 }
176 
177 /**
178  * pow_mod() - in-place public exponentiation
179  *
180  * @key:	RSA key
181  * @inout:	Big-endian word array containing value and result
182  */
pow_mod(const struct rsa_public_key * key,uint32_t * inout)183 static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
184 {
185 	uint32_t *result, *ptr;
186 	uint i;
187 	int j, k;
188 
189 	/* Sanity check for stack size - key->len is in 32-bit words */
190 	if (key->len > RSA_MAX_KEY_BITS / 32) {
191 		debug("RSA key words %u exceeds maximum %d\n", key->len,
192 		      RSA_MAX_KEY_BITS / 32);
193 		return -EINVAL;
194 	}
195 
196 	uint32_t val[key->len], acc[key->len], tmp[key->len];
197 	uint32_t a_scaled[key->len];
198 	result = tmp;  /* Re-use location. */
199 
200 	/* Convert from big endian byte array to little endian word array. */
201 	for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
202 		val[i] = get_unaligned_be32(ptr);
203 
204 	if (0 != num_public_exponent_bits(key, &k))
205 		return -EINVAL;
206 
207 	if (k < 2) {
208 		debug("Public exponent is too short (%d bits, minimum 2)\n",
209 		      k);
210 		return -EINVAL;
211 	}
212 
213 	if (!is_public_exponent_bit_set(key, 0)) {
214 		debug("LSB of RSA public exponent must be set.\n");
215 		return -EINVAL;
216 	}
217 
218 	/* the bit at e[k-1] is 1 by definition, so start with: C := M */
219 	montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
220 	/* retain scaled version for intermediate use */
221 	memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));
222 
223 	for (j = k - 2; j > 0; --j) {
224 		montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
225 
226 		if (is_public_exponent_bit_set(key, j)) {
227 			/* acc = tmp * val / R mod n */
228 			montgomery_mul(key, acc, tmp, a_scaled);
229 		} else {
230 			/* e[j] == 0, copy tmp back to acc for next operation */
231 			memcpy(acc, tmp, key->len * sizeof(acc[0]));
232 		}
233 	}
234 
235 	/* the bit at e[0] is always 1 */
236 	montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
237 	montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
238 	memcpy(result, acc, key->len * sizeof(result[0]));
239 
240 	/* Make sure result < mod; result is at most 1x mod too large. */
241 	if (greater_equal_modulus(key, result))
242 		subtract_modulus(key, result);
243 
244 	/* Convert to bigendian byte array */
245 	for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
246 		put_unaligned_be32(result[i], ptr);
247 	return 0;
248 }
249 
rsa_convert_big_endian(uint32_t * dst,const uint32_t * src,int len)250 static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
251 {
252 	int i;
253 
254 	for (i = 0; i < len; i++)
255 		dst[i] = fdt32_to_cpu(src[len - 1 - i]);
256 }
257 
rsa_mod_exp_sw(const uint8_t * sig,uint32_t sig_len,struct key_prop * prop,uint8_t * out)258 int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
259 		struct key_prop *prop, uint8_t *out)
260 {
261 	struct rsa_public_key key;
262 	int ret;
263 
264 	if (!prop) {
265 		debug("%s: Skipping invalid prop", __func__);
266 		return -EBADF;
267 	}
268 	key.n0inv = prop->n0inv;
269 	key.len = prop->num_bits;
270 
271 	if (!prop->public_exponent)
272 		key.exponent = RSA_DEFAULT_PUBEXP;
273 	else
274 		key.exponent = fdt64_to_cpup(prop->public_exponent);
275 
276 	if (!key.len || !prop->modulus || !prop->rr) {
277 		debug("%s: Missing RSA key info", __func__);
278 		return -EFAULT;
279 	}
280 
281 	/* Sanity check for stack size */
282 	if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
283 		debug("RSA key bits %u outside allowed range %d..%d\n",
284 		      key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
285 		return -EFAULT;
286 	}
287 	key.len /= sizeof(uint32_t) * 8;
288 	uint32_t key1[key.len], key2[key.len];
289 
290 	key.modulus = key1;
291 	key.rr = key2;
292 	rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len);
293 	rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len);
294 	if (!key.modulus || !key.rr) {
295 		debug("%s: Out of memory", __func__);
296 		return -ENOMEM;
297 	}
298 
299 	uint32_t buf[sig_len / sizeof(uint32_t)];
300 
301 	memcpy(buf, sig, sig_len);
302 
303 	ret = pow_mod(&key, buf);
304 	if (ret)
305 		return ret;
306 
307 	memcpy(out, buf, sig_len);
308 
309 	return 0;
310 }
311 
312 #if defined(CONFIG_CMD_ZYNQ_RSA)
313 /**
314  * zynq_pow_mod - in-place public exponentiation
315  *
316  * @keyptr:	RSA key
317  * @inout:	Big-endian word array containing value and result
318  * @return 0 on successful calculation, otherwise failure error code
319  *
320  * FIXME: Use pow_mod() instead of zynq_pow_mod()
321  *        pow_mod calculation required for zynq is bit different from
322  *        pw_mod above here, hence defined zynq specific routine.
323  */
zynq_pow_mod(uint32_t * keyptr,uint32_t * inout)324 int zynq_pow_mod(uint32_t *keyptr, uint32_t *inout)
325 {
326 	u32 *result, *ptr;
327 	uint i;
328 	struct rsa_public_key *key;
329 	u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES];
330 
331 	key = (struct rsa_public_key *)keyptr;
332 
333 	/* Sanity check for stack size - key->len is in 32-bit words */
334 	if (key->len > RSA_MAX_KEY_BITS / 32) {
335 		debug("RSA key words %u exceeds maximum %d\n", key->len,
336 		      RSA_MAX_KEY_BITS / 32);
337 		return -EINVAL;
338 	}
339 
340 	result = tmp;  /* Re-use location. */
341 
342 	for (i = 0, ptr = inout; i < key->len; i++, ptr++)
343 		val[i] = *(ptr);
344 
345 	montgomery_mul(key, acc, val, key->rr);  /* axx = a * RR / R mod M */
346 	for (i = 0; i < 16; i += 2) {
347 		montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */
348 		montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */
349 	}
350 	montgomery_mul(key, result, acc, val);  /* result = XX * a / R mod M */
351 
352 	/* Make sure result < mod; result is at most 1x mod too large. */
353 	if (greater_equal_modulus(key, result))
354 		subtract_modulus(key, result);
355 
356 	for (i = 0, ptr = inout; i < key->len; i++, ptr++)
357 		*ptr = result[i];
358 
359 	return 0;
360 }
361 #endif
362