1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Tests for the core driver model code
4  *
5  * Copyright (c) 2013 Google, Inc
6  */
7 
8 #include <common.h>
9 #include <errno.h>
10 #include <dm.h>
11 #include <fdtdec.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <asm/global_data.h>
15 #include <dm/device-internal.h>
16 #include <dm/root.h>
17 #include <dm/util.h>
18 #include <dm/test.h>
19 #include <dm/uclass-internal.h>
20 #include <test/test.h>
21 #include <test/ut.h>
22 
23 DECLARE_GLOBAL_DATA_PTR;
24 
25 enum {
26 	TEST_INTVAL1		= 0,
27 	TEST_INTVAL2		= 3,
28 	TEST_INTVAL3		= 6,
29 	TEST_INTVAL_MANUAL	= 101112,
30 	TEST_INTVAL_PRE_RELOC	= 7,
31 };
32 
33 static const struct dm_test_pdata test_pdata[] = {
34 	{ .ping_add		= TEST_INTVAL1, },
35 	{ .ping_add		= TEST_INTVAL2, },
36 	{ .ping_add		= TEST_INTVAL3, },
37 };
38 
39 static const struct dm_test_pdata test_pdata_manual = {
40 	.ping_add		= TEST_INTVAL_MANUAL,
41 };
42 
43 static const struct dm_test_pdata test_pdata_pre_reloc = {
44 	.ping_add		= TEST_INTVAL_PRE_RELOC,
45 };
46 
47 U_BOOT_DRVINFO(dm_test_info1) = {
48 	.name = "test_drv",
49 	.plat = &test_pdata[0],
50 };
51 
52 U_BOOT_DRVINFO(dm_test_info2) = {
53 	.name = "test_drv",
54 	.plat = &test_pdata[1],
55 };
56 
57 U_BOOT_DRVINFO(dm_test_info3) = {
58 	.name = "test_drv",
59 	.plat = &test_pdata[2],
60 };
61 
62 static struct driver_info driver_info_manual = {
63 	.name = "test_manual_drv",
64 	.plat = &test_pdata_manual,
65 };
66 
67 static struct driver_info driver_info_pre_reloc = {
68 	.name = "test_pre_reloc_drv",
69 	.plat = &test_pdata_pre_reloc,
70 };
71 
72 static struct driver_info driver_info_act_dma = {
73 	.name = "test_act_dma_drv",
74 };
75 
76 static struct driver_info driver_info_vital_clk = {
77 	.name = "test_vital_clk_drv",
78 };
79 
80 static struct driver_info driver_info_act_dma_vital_clk = {
81 	.name = "test_act_dma_vital_clk_drv",
82 };
83 
dm_leak_check_start(struct unit_test_state * uts)84 void dm_leak_check_start(struct unit_test_state *uts)
85 {
86 	uts->start = mallinfo();
87 	if (!uts->start.uordblks)
88 		puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
89 }
90 
dm_leak_check_end(struct unit_test_state * uts)91 int dm_leak_check_end(struct unit_test_state *uts)
92 {
93 	struct mallinfo end;
94 	int id, diff;
95 
96 	/* Don't delete the root class, since we started with that */
97 	for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
98 		struct uclass *uc;
99 
100 		uc = uclass_find(id);
101 		if (!uc)
102 			continue;
103 		ut_assertok(uclass_destroy(uc));
104 	}
105 
106 	end = mallinfo();
107 	diff = end.uordblks - uts->start.uordblks;
108 	if (diff > 0)
109 		printf("Leak: lost %#xd bytes\n", diff);
110 	else if (diff < 0)
111 		printf("Leak: gained %#xd bytes\n", -diff);
112 	ut_asserteq(uts->start.uordblks, end.uordblks);
113 
114 	return 0;
115 }
116 
117 /* Test that binding with plat occurs correctly */
dm_test_autobind(struct unit_test_state * uts)118 static int dm_test_autobind(struct unit_test_state *uts)
119 {
120 	struct dm_test_state *dms = uts->priv;
121 	struct udevice *dev;
122 
123 	/*
124 	 * We should have a single class (UCLASS_ROOT) and a single root
125 	 * device with no children.
126 	 */
127 	ut_assert(dms->root);
128 	ut_asserteq(1, list_count_items(gd->uclass_root));
129 	ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
130 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
131 
132 	ut_assertok(dm_scan_plat(false));
133 
134 	/* We should have our test class now at least, plus more children */
135 	ut_assert(1 < list_count_items(gd->uclass_root));
136 	ut_assert(0 < list_count_items(&gd->dm_root->child_head));
137 
138 	/* Our 3 dm_test_infox children should be bound to the test uclass */
139 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
140 
141 	/* No devices should be probed */
142 	list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
143 		ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
144 
145 	/* Our test driver should have been bound 3 times */
146 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
147 
148 	return 0;
149 }
150 DM_TEST(dm_test_autobind, 0);
151 
152 /* Test that binding with uclass plat allocation occurs correctly */
dm_test_autobind_uclass_pdata_alloc(struct unit_test_state * uts)153 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
154 {
155 	struct dm_test_perdev_uc_pdata *uc_pdata;
156 	struct udevice *dev;
157 	struct uclass *uc;
158 
159 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
160 	ut_assert(uc);
161 
162 	/**
163 	 * Test if test uclass driver requires allocation for the uclass
164 	 * platform data and then check the dev->uclass_plat pointer.
165 	 */
166 	ut_assert(uc->uc_drv->per_device_plat_auto);
167 
168 	for (uclass_find_first_device(UCLASS_TEST, &dev);
169 	     dev;
170 	     uclass_find_next_device(&dev)) {
171 		ut_assertnonnull(dev);
172 
173 		uc_pdata = dev_get_uclass_plat(dev);
174 		ut_assert(uc_pdata);
175 	}
176 
177 	return 0;
178 }
179 DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
180 
181 /* Test that binding with uclass plat setting occurs correctly */
dm_test_autobind_uclass_pdata_valid(struct unit_test_state * uts)182 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
183 {
184 	struct dm_test_perdev_uc_pdata *uc_pdata;
185 	struct udevice *dev;
186 
187 	/**
188 	 * In the test_postbind() method of test uclass driver, the uclass
189 	 * platform data should be set to three test int values - test it.
190 	 */
191 	for (uclass_find_first_device(UCLASS_TEST, &dev);
192 	     dev;
193 	     uclass_find_next_device(&dev)) {
194 		ut_assertnonnull(dev);
195 
196 		uc_pdata = dev_get_uclass_plat(dev);
197 		ut_assert(uc_pdata);
198 		ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
199 		ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
200 		ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
201 	}
202 
203 	return 0;
204 }
205 DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
206 
207 /* Test that autoprobe finds all the expected devices */
dm_test_autoprobe(struct unit_test_state * uts)208 static int dm_test_autoprobe(struct unit_test_state *uts)
209 {
210 	struct dm_test_state *dms = uts->priv;
211 	int expected_base_add;
212 	struct udevice *dev;
213 	struct uclass *uc;
214 	int i;
215 
216 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
217 	ut_assert(uc);
218 
219 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
220 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
221 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
222 
223 	/* The root device should not be activated until needed */
224 	ut_assert(dev_get_flags(dms->root) & DM_FLAG_ACTIVATED);
225 
226 	/*
227 	 * We should be able to find the three test devices, and they should
228 	 * all be activated as they are used (lazy activation, required by
229 	 * U-Boot)
230 	 */
231 	for (i = 0; i < 3; i++) {
232 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
233 		ut_assert(dev);
234 		ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
235 			   "Driver %d/%s already activated", i, dev->name);
236 
237 		/* This should activate it */
238 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
239 		ut_assert(dev);
240 		ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
241 
242 		/* Activating a device should activate the root device */
243 		if (!i)
244 			ut_assert(dev_get_flags(dms->root) & DM_FLAG_ACTIVATED);
245 	}
246 
247 	/*
248 	 * Our 3 dm_test_info children should be passed to pre_probe and
249 	 * post_probe
250 	 */
251 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
252 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
253 
254 	/* Also we can check the per-device data */
255 	expected_base_add = 0;
256 	for (i = 0; i < 3; i++) {
257 		struct dm_test_uclass_perdev_priv *priv;
258 		struct dm_test_pdata *pdata;
259 
260 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
261 		ut_assert(dev);
262 
263 		priv = dev_get_uclass_priv(dev);
264 		ut_assert(priv);
265 		ut_asserteq(expected_base_add, priv->base_add);
266 
267 		pdata = dev_get_plat(dev);
268 		expected_base_add += pdata->ping_add;
269 	}
270 
271 	return 0;
272 }
273 DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
274 
275 /* Check that we see the correct plat in each device */
dm_test_plat(struct unit_test_state * uts)276 static int dm_test_plat(struct unit_test_state *uts)
277 {
278 	const struct dm_test_pdata *pdata;
279 	struct udevice *dev;
280 	int i;
281 
282 	for (i = 0; i < 3; i++) {
283 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
284 		ut_assert(dev);
285 		pdata = dev_get_plat(dev);
286 		ut_assert(pdata->ping_add == test_pdata[i].ping_add);
287 	}
288 
289 	return 0;
290 }
291 DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
292 
293 /* Test that we can bind, probe, remove, unbind a driver */
dm_test_lifecycle(struct unit_test_state * uts)294 static int dm_test_lifecycle(struct unit_test_state *uts)
295 {
296 	struct dm_test_state *dms = uts->priv;
297 	int op_count[DM_TEST_OP_COUNT];
298 	struct udevice *dev, *test_dev;
299 	int pingret;
300 	int ret;
301 
302 	memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
303 
304 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
305 					&dev));
306 	ut_assert(dev);
307 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
308 			== op_count[DM_TEST_OP_BIND] + 1);
309 	ut_assert(!dev_get_priv(dev));
310 
311 	/* Probe the device - it should fail allocating private data */
312 	dms->force_fail_alloc = 1;
313 	ret = device_probe(dev);
314 	ut_assert(ret == -ENOMEM);
315 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
316 			== op_count[DM_TEST_OP_PROBE] + 1);
317 	ut_assert(!dev_get_priv(dev));
318 
319 	/* Try again without the alloc failure */
320 	dms->force_fail_alloc = 0;
321 	ut_assertok(device_probe(dev));
322 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
323 			== op_count[DM_TEST_OP_PROBE] + 2);
324 	ut_assert(dev_get_priv(dev));
325 
326 	/* This should be device 3 in the uclass */
327 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
328 	ut_assert(dev == test_dev);
329 
330 	/* Try ping */
331 	ut_assertok(test_ping(dev, 100, &pingret));
332 	ut_assert(pingret == 102);
333 
334 	/* Now remove device 3 */
335 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
336 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
337 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
338 
339 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
340 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
341 	ut_assertok(device_unbind(dev));
342 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
343 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
344 
345 	return 0;
346 }
347 DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
348 
349 /* Test that we can bind/unbind and the lists update correctly */
dm_test_ordering(struct unit_test_state * uts)350 static int dm_test_ordering(struct unit_test_state *uts)
351 {
352 	struct dm_test_state *dms = uts->priv;
353 	struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
354 	int pingret;
355 
356 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
357 					&dev));
358 	ut_assert(dev);
359 
360 	/* Bind two new devices (numbers 4 and 5) */
361 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
362 					&dev_penultimate));
363 	ut_assert(dev_penultimate);
364 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
365 					&dev_last));
366 	ut_assert(dev_last);
367 
368 	/* Now remove device 3 */
369 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
370 	ut_assertok(device_unbind(dev));
371 
372 	/* The device numbering should have shifted down one */
373 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
374 	ut_assert(dev_penultimate == test_dev);
375 	ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
376 	ut_assert(dev_last == test_dev);
377 
378 	/* Add back the original device 3, now in position 5 */
379 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
380 					&dev));
381 	ut_assert(dev);
382 
383 	/* Try ping */
384 	ut_assertok(test_ping(dev, 100, &pingret));
385 	ut_assert(pingret == 102);
386 
387 	/* Remove 3 and 4 */
388 	ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
389 	ut_assertok(device_unbind(dev_penultimate));
390 	ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
391 	ut_assertok(device_unbind(dev_last));
392 
393 	/* Our device should now be in position 3 */
394 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
395 	ut_assert(dev == test_dev);
396 
397 	/* Now remove device 3 */
398 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
399 	ut_assertok(device_unbind(dev));
400 
401 	return 0;
402 }
403 DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
404 
405 /* Check that we can perform operations on a device (do a ping) */
dm_check_operations(struct unit_test_state * uts,struct udevice * dev,uint32_t base,struct dm_test_priv * priv)406 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
407 			uint32_t base, struct dm_test_priv *priv)
408 {
409 	int expected;
410 	int pingret;
411 
412 	/* Getting the child device should allocate plat / priv */
413 	ut_assertok(testfdt_ping(dev, 10, &pingret));
414 	ut_assert(dev_get_priv(dev));
415 	ut_assert(dev_get_plat(dev));
416 
417 	expected = 10 + base;
418 	ut_asserteq(expected, pingret);
419 
420 	/* Do another ping */
421 	ut_assertok(testfdt_ping(dev, 20, &pingret));
422 	expected = 20 + base;
423 	ut_asserteq(expected, pingret);
424 
425 	/* Now check the ping_total */
426 	priv = dev_get_priv(dev);
427 	ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
428 		    priv->ping_total);
429 
430 	return 0;
431 }
432 
433 /* Check that we can perform operations on devices */
dm_test_operations(struct unit_test_state * uts)434 static int dm_test_operations(struct unit_test_state *uts)
435 {
436 	struct udevice *dev;
437 	int i;
438 
439 	/*
440 	 * Now check that the ping adds are what we expect. This is using the
441 	 * ping-add property in each node.
442 	 */
443 	for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
444 		uint32_t base;
445 
446 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
447 
448 		/*
449 		 * Get the 'reg' property, which tells us what the ping add
450 		 * should be. We don't use the plat because we want
451 		 * to test the code that sets that up (testfdt_drv_probe()).
452 		 */
453 		base = test_pdata[i].ping_add;
454 		debug("dev=%d, base=%d\n", i, base);
455 
456 		ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
457 	}
458 
459 	return 0;
460 }
461 DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
462 
463 /* Remove all drivers and check that things work */
dm_test_remove(struct unit_test_state * uts)464 static int dm_test_remove(struct unit_test_state *uts)
465 {
466 	struct udevice *dev;
467 	int i;
468 
469 	for (i = 0; i < 3; i++) {
470 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
471 		ut_assert(dev);
472 		ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
473 			   "Driver %d/%s not activated", i, dev->name);
474 		ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
475 		ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
476 			   "Driver %d/%s should have deactivated", i,
477 			   dev->name);
478 		ut_assert(!dev_get_priv(dev));
479 	}
480 
481 	return 0;
482 }
483 DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
484 
485 /* Remove and recreate everything, check for memory leaks */
dm_test_leak(struct unit_test_state * uts)486 static int dm_test_leak(struct unit_test_state *uts)
487 {
488 	int i;
489 
490 	for (i = 0; i < 2; i++) {
491 		struct udevice *dev;
492 		int ret;
493 		int id;
494 
495 		dm_leak_check_start(uts);
496 
497 		ut_assertok(dm_scan_plat(false));
498 		ut_assertok(dm_scan_fdt(false));
499 
500 		/* Scanning the uclass is enough to probe all the devices */
501 		for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
502 			for (ret = uclass_first_device(UCLASS_TEST, &dev);
503 			     dev;
504 			     ret = uclass_next_device(&dev))
505 				;
506 			ut_assertok(ret);
507 		}
508 
509 		ut_assertok(dm_leak_check_end(uts));
510 	}
511 
512 	return 0;
513 }
514 DM_TEST(dm_test_leak, 0);
515 
516 /* Test uclass init/destroy methods */
dm_test_uclass(struct unit_test_state * uts)517 static int dm_test_uclass(struct unit_test_state *uts)
518 {
519 	struct uclass *uc;
520 
521 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
522 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
523 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
524 	ut_assert(uclass_get_priv(uc));
525 
526 	ut_assertok(uclass_destroy(uc));
527 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
528 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
529 
530 	return 0;
531 }
532 DM_TEST(dm_test_uclass, 0);
533 
534 /**
535  * create_children() - Create children of a parent node
536  *
537  * @dms:	Test system state
538  * @parent:	Parent device
539  * @count:	Number of children to create
540  * @key:	Key value to put in first child. Subsequence children
541  *		receive an incrementing value
542  * @child:	If not NULL, then the child device pointers are written into
543  *		this array.
544  * @return 0 if OK, -ve on error
545  */
create_children(struct unit_test_state * uts,struct udevice * parent,int count,int key,struct udevice * child[])546 static int create_children(struct unit_test_state *uts, struct udevice *parent,
547 			   int count, int key, struct udevice *child[])
548 {
549 	struct udevice *dev;
550 	int i;
551 
552 	for (i = 0; i < count; i++) {
553 		struct dm_test_pdata *pdata;
554 
555 		ut_assertok(device_bind_by_name(parent, false,
556 						&driver_info_manual, &dev));
557 		pdata = calloc(1, sizeof(*pdata));
558 		pdata->ping_add = key + i;
559 		dev_set_plat(dev, pdata);
560 		if (child)
561 			child[i] = dev;
562 	}
563 
564 	return 0;
565 }
566 
567 #define NODE_COUNT	10
568 
dm_test_children(struct unit_test_state * uts)569 static int dm_test_children(struct unit_test_state *uts)
570 {
571 	struct dm_test_state *dms = uts->priv;
572 	struct udevice *top[NODE_COUNT];
573 	struct udevice *child[NODE_COUNT];
574 	struct udevice *grandchild[NODE_COUNT];
575 	struct udevice *dev;
576 	int total;
577 	int ret;
578 	int i;
579 
580 	/* We don't care about the numbering for this test */
581 	dms->skip_post_probe = 1;
582 
583 	ut_assert(NODE_COUNT > 5);
584 
585 	/* First create 10 top-level children */
586 	ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
587 
588 	/* Now a few have their own children */
589 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
590 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
591 
592 	/* And grandchildren */
593 	for (i = 0; i < NODE_COUNT; i++)
594 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
595 					    i == 2 ? grandchild : NULL));
596 
597 	/* Check total number of devices */
598 	total = NODE_COUNT * (3 + NODE_COUNT);
599 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
600 
601 	/* Try probing one of the grandchildren */
602 	ut_assertok(uclass_get_device(UCLASS_TEST,
603 				      NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
604 	ut_asserteq_ptr(grandchild[0], dev);
605 
606 	/*
607 	 * This should have probed the child and top node also, for a total
608 	 * of 3 nodes.
609 	 */
610 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
611 
612 	/* Probe the other grandchildren */
613 	for (i = 1; i < NODE_COUNT; i++)
614 		ut_assertok(device_probe(grandchild[i]));
615 
616 	ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
617 
618 	/* Probe everything */
619 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
620 	     dev;
621 	     ret = uclass_next_device(&dev))
622 		;
623 	ut_assertok(ret);
624 
625 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
626 
627 	/* Remove a top-level child and check that the children are removed */
628 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
629 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
630 	dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
631 
632 	/* Try one with grandchildren */
633 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
634 	ut_asserteq_ptr(dev, top[5]);
635 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
636 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
637 		    dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
638 
639 	/* Try the same with unbind */
640 	ut_assertok(device_unbind(top[2]));
641 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
642 	dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
643 
644 	/* Try one with grandchildren */
645 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
646 	ut_asserteq_ptr(dev, top[6]);
647 	ut_assertok(device_unbind(top[5]));
648 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
649 		    dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
650 
651 	return 0;
652 }
653 DM_TEST(dm_test_children, 0);
654 
dm_test_device_reparent(struct unit_test_state * uts)655 static int dm_test_device_reparent(struct unit_test_state *uts)
656 {
657 	struct dm_test_state *dms = uts->priv;
658 	struct udevice *top[NODE_COUNT];
659 	struct udevice *child[NODE_COUNT];
660 	struct udevice *grandchild[NODE_COUNT];
661 	struct udevice *dev;
662 	int total;
663 	int ret;
664 	int i;
665 
666 	/* We don't care about the numbering for this test */
667 	dms->skip_post_probe = 1;
668 
669 	ut_assert(NODE_COUNT > 5);
670 
671 	/* First create 10 top-level children */
672 	ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
673 
674 	/* Now a few have their own children */
675 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
676 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
677 
678 	/* And grandchildren */
679 	for (i = 0; i < NODE_COUNT; i++)
680 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
681 					    i == 2 ? grandchild : NULL));
682 
683 	/* Check total number of devices */
684 	total = NODE_COUNT * (3 + NODE_COUNT);
685 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
686 
687 	/* Probe everything */
688 	for (i = 0; i < total; i++)
689 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
690 
691 	/* Re-parent top-level children with no grandchildren. */
692 	ut_assertok(device_reparent(top[3], top[0]));
693 	/* try to get devices */
694 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
695 	     dev;
696 	     ret = uclass_find_next_device(&dev)) {
697 		ut_assert(!ret);
698 		ut_assertnonnull(dev);
699 	}
700 
701 	ut_assertok(device_reparent(top[4], top[0]));
702 	/* try to get devices */
703 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
704 	     dev;
705 	     ret = uclass_find_next_device(&dev)) {
706 		ut_assert(!ret);
707 		ut_assertnonnull(dev);
708 	}
709 
710 	/* Re-parent top-level children with grandchildren. */
711 	ut_assertok(device_reparent(top[2], top[0]));
712 	/* try to get devices */
713 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
714 	     dev;
715 	     ret = uclass_find_next_device(&dev)) {
716 		ut_assert(!ret);
717 		ut_assertnonnull(dev);
718 	}
719 
720 	ut_assertok(device_reparent(top[5], top[2]));
721 	/* try to get devices */
722 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
723 	     dev;
724 	     ret = uclass_find_next_device(&dev)) {
725 		ut_assert(!ret);
726 		ut_assertnonnull(dev);
727 	}
728 
729 	/* Re-parent grandchildren. */
730 	ut_assertok(device_reparent(grandchild[0], top[1]));
731 	/* try to get devices */
732 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
733 	     dev;
734 	     ret = uclass_find_next_device(&dev)) {
735 		ut_assert(!ret);
736 		ut_assertnonnull(dev);
737 	}
738 
739 	ut_assertok(device_reparent(grandchild[1], top[1]));
740 	/* try to get devices */
741 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
742 	     dev;
743 	     ret = uclass_find_next_device(&dev)) {
744 		ut_assert(!ret);
745 		ut_assertnonnull(dev);
746 	}
747 
748 	/* Remove re-pareneted devices. */
749 	ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
750 	/* try to get devices */
751 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
752 	     dev;
753 	     ret = uclass_find_next_device(&dev)) {
754 		ut_assert(!ret);
755 		ut_assertnonnull(dev);
756 	}
757 
758 	ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
759 	/* try to get devices */
760 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
761 	     dev;
762 	     ret = uclass_find_next_device(&dev)) {
763 		ut_assert(!ret);
764 		ut_assertnonnull(dev);
765 	}
766 
767 	ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
768 	/* try to get devices */
769 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
770 	     dev;
771 	     ret = uclass_find_next_device(&dev)) {
772 		ut_assert(!ret);
773 		ut_assertnonnull(dev);
774 	}
775 
776 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
777 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
778 	     dev;
779 	     ret = uclass_find_next_device(&dev)) {
780 		ut_assert(!ret);
781 		ut_assertnonnull(dev);
782 	}
783 
784 	ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
785 	/* try to get devices */
786 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
787 	     dev;
788 	     ret = uclass_find_next_device(&dev)) {
789 		ut_assert(!ret);
790 		ut_assertnonnull(dev);
791 	}
792 
793 	ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
794 	/* try to get devices */
795 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
796 	     dev;
797 	     ret = uclass_find_next_device(&dev)) {
798 		ut_assert(!ret);
799 		ut_assertnonnull(dev);
800 	}
801 
802 	/* Try the same with unbind */
803 	ut_assertok(device_unbind(top[3]));
804 	ut_assertok(device_unbind(top[4]));
805 	ut_assertok(device_unbind(top[5]));
806 	ut_assertok(device_unbind(top[2]));
807 
808 	ut_assertok(device_unbind(grandchild[0]));
809 	ut_assertok(device_unbind(grandchild[1]));
810 
811 	return 0;
812 }
813 DM_TEST(dm_test_device_reparent, 0);
814 
815 /* Test that pre-relocation devices work as expected */
dm_test_pre_reloc(struct unit_test_state * uts)816 static int dm_test_pre_reloc(struct unit_test_state *uts)
817 {
818 	struct dm_test_state *dms = uts->priv;
819 	struct udevice *dev;
820 
821 	/* The normal driver should refuse to bind before relocation */
822 	ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
823 						&driver_info_manual, &dev));
824 
825 	/* But this one is marked pre-reloc */
826 	ut_assertok(device_bind_by_name(dms->root, true,
827 					&driver_info_pre_reloc, &dev));
828 
829 	return 0;
830 }
831 DM_TEST(dm_test_pre_reloc, 0);
832 
833 /*
834  * Test that removal of devices, either via the "normal" device_remove()
835  * API or via the device driver selective flag works as expected
836  */
dm_test_remove_active_dma(struct unit_test_state * uts)837 static int dm_test_remove_active_dma(struct unit_test_state *uts)
838 {
839 	struct dm_test_state *dms = uts->priv;
840 	struct udevice *dev;
841 
842 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_act_dma,
843 					&dev));
844 	ut_assert(dev);
845 
846 	/* Probe the device */
847 	ut_assertok(device_probe(dev));
848 
849 	/* Test if device is active right now */
850 	ut_asserteq(true, device_active(dev));
851 
852 	/* Remove the device via selective remove flag */
853 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
854 
855 	/* Test if device is inactive right now */
856 	ut_asserteq(false, device_active(dev));
857 
858 	/* Probe the device again */
859 	ut_assertok(device_probe(dev));
860 
861 	/* Test if device is active right now */
862 	ut_asserteq(true, device_active(dev));
863 
864 	/* Remove the device via "normal" remove API */
865 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
866 
867 	/* Test if device is inactive right now */
868 	ut_asserteq(false, device_active(dev));
869 
870 	/*
871 	 * Test if a device without the active DMA flags is not removed upon
872 	 * the active DMA remove call
873 	 */
874 	ut_assertok(device_unbind(dev));
875 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
876 					&dev));
877 	ut_assert(dev);
878 
879 	/* Probe the device */
880 	ut_assertok(device_probe(dev));
881 
882 	/* Test if device is active right now */
883 	ut_asserteq(true, device_active(dev));
884 
885 	/* Remove the device via selective remove flag */
886 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
887 
888 	/* Test if device is still active right now */
889 	ut_asserteq(true, device_active(dev));
890 
891 	return 0;
892 }
893 DM_TEST(dm_test_remove_active_dma, 0);
894 
895 /* Test removal of 'vital' devices */
dm_test_remove_vital(struct unit_test_state * uts)896 static int dm_test_remove_vital(struct unit_test_state *uts)
897 {
898 	struct dm_test_state *dms = uts->priv;
899 	struct udevice *normal, *dma, *vital, *dma_vital;
900 
901 	/* Skip the behaviour in test_post_probe() */
902 	dms->skip_post_probe = 1;
903 
904 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
905 					&normal));
906 	ut_assertnonnull(normal);
907 
908 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_act_dma,
909 					&dma));
910 	ut_assertnonnull(dma);
911 
912 	ut_assertok(device_bind_by_name(dms->root, false,
913 					&driver_info_vital_clk, &vital));
914 	ut_assertnonnull(vital);
915 
916 	ut_assertok(device_bind_by_name(dms->root, false,
917 					&driver_info_act_dma_vital_clk,
918 					&dma_vital));
919 	ut_assertnonnull(dma_vital);
920 
921 	/* Probe the devices */
922 	ut_assertok(device_probe(normal));
923 	ut_assertok(device_probe(dma));
924 	ut_assertok(device_probe(vital));
925 	ut_assertok(device_probe(dma_vital));
926 
927 	/* Check that devices are active right now */
928 	ut_asserteq(true, device_active(normal));
929 	ut_asserteq(true, device_active(dma));
930 	ut_asserteq(true, device_active(vital));
931 	ut_asserteq(true, device_active(dma_vital));
932 
933 	/* Remove active devices via selective remove flag */
934 	dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
935 
936 	/*
937 	 * Check that this only has an effect on the dma device, since two
938 	 * devices are vital and the third does not have active DMA
939 	 */
940 	ut_asserteq(true, device_active(normal));
941 	ut_asserteq(false, device_active(dma));
942 	ut_asserteq(true, device_active(vital));
943 	ut_asserteq(true, device_active(dma_vital));
944 
945 	/* Remove active devices via selective remove flag */
946 	ut_assertok(device_probe(dma));
947 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
948 
949 	/* This should have affected both active-dma devices */
950 	ut_asserteq(true, device_active(normal));
951 	ut_asserteq(false, device_active(dma));
952 	ut_asserteq(true, device_active(vital));
953 	ut_asserteq(false, device_active(dma_vital));
954 
955 	/* Remove non-vital devices */
956 	ut_assertok(device_probe(dma));
957 	ut_assertok(device_probe(dma_vital));
958 	dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
959 
960 	/* This should have affected only non-vital devices */
961 	ut_asserteq(false, device_active(normal));
962 	ut_asserteq(false, device_active(dma));
963 	ut_asserteq(true, device_active(vital));
964 	ut_asserteq(true, device_active(dma_vital));
965 
966 	/* Remove vital devices via normal remove flag */
967 	ut_assertok(device_probe(normal));
968 	ut_assertok(device_probe(dma));
969 	dm_remove_devices_flags(DM_REMOVE_NORMAL);
970 
971 	/* Check that all devices are inactive right now */
972 	ut_asserteq(false, device_active(normal));
973 	ut_asserteq(false, device_active(dma));
974 	ut_asserteq(false, device_active(vital));
975 	ut_asserteq(false, device_active(dma_vital));
976 
977 	return 0;
978 }
979 DM_TEST(dm_test_remove_vital, 0);
980 
dm_test_uclass_before_ready(struct unit_test_state * uts)981 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
982 {
983 	struct uclass *uc;
984 
985 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
986 
987 	gd->dm_root = NULL;
988 	gd->dm_root_f = NULL;
989 	memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
990 
991 	ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
992 
993 	return 0;
994 }
995 DM_TEST(dm_test_uclass_before_ready, 0);
996 
dm_test_uclass_devices_find(struct unit_test_state * uts)997 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
998 {
999 	struct udevice *dev;
1000 	int ret;
1001 
1002 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
1003 	     dev;
1004 	     ret = uclass_find_next_device(&dev)) {
1005 		ut_assert(!ret);
1006 		ut_assertnonnull(dev);
1007 	}
1008 
1009 	ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
1010 	ut_assertnull(dev);
1011 
1012 	return 0;
1013 }
1014 DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
1015 
dm_test_uclass_devices_find_by_name(struct unit_test_state * uts)1016 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
1017 {
1018 	struct udevice *finddev;
1019 	struct udevice *testdev;
1020 	int findret, ret;
1021 
1022 	/*
1023 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
1024 	 * use its name and try to find it by uclass_find_device_by_name().
1025 	 * Then, on success check if:
1026 	 * - current 'testdev' name is equal to the returned 'finddev' name
1027 	 * - current 'testdev' pointer is equal to the returned 'finddev'
1028 	 *
1029 	 * We assume that, each uclass's device name is unique, so if not, then
1030 	 * this will fail on checking condition: testdev == finddev, since the
1031 	 * uclass_find_device_by_name(), returns the first device by given name.
1032 	*/
1033 	for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
1034 	     testdev;
1035 	     ret = uclass_find_next_device(&testdev)) {
1036 		ut_assertok(ret);
1037 		ut_assertnonnull(testdev);
1038 
1039 		findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
1040 						     testdev->name,
1041 						     &finddev);
1042 
1043 		ut_assertok(findret);
1044 		ut_assert(testdev);
1045 		ut_asserteq_str(testdev->name, finddev->name);
1046 		ut_asserteq_ptr(testdev, finddev);
1047 	}
1048 
1049 	return 0;
1050 }
1051 DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
1052 
dm_test_uclass_devices_get(struct unit_test_state * uts)1053 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
1054 {
1055 	struct udevice *dev;
1056 	int ret;
1057 
1058 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
1059 	     dev;
1060 	     ret = uclass_next_device(&dev)) {
1061 		ut_assert(!ret);
1062 		ut_assert(dev);
1063 		ut_assert(device_active(dev));
1064 	}
1065 
1066 	return 0;
1067 }
1068 DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
1069 
dm_test_uclass_devices_get_by_name(struct unit_test_state * uts)1070 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
1071 {
1072 	struct udevice *finddev;
1073 	struct udevice *testdev;
1074 	int ret, findret;
1075 
1076 	/*
1077 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
1078 	 * use its name and try to get it by uclass_get_device_by_name().
1079 	 * On success check if:
1080 	 * - returned finddev' is active
1081 	 * - current 'testdev' name is equal to the returned 'finddev' name
1082 	 * - current 'testdev' pointer is equal to the returned 'finddev'
1083 	 *
1084 	 * We asserts that the 'testdev' is active on each loop entry, so we
1085 	 * could be sure that the 'finddev' is activated too, but for sure
1086 	 * we check it again.
1087 	 *
1088 	 * We assume that, each uclass's device name is unique, so if not, then
1089 	 * this will fail on checking condition: testdev == finddev, since the
1090 	 * uclass_get_device_by_name(), returns the first device by given name.
1091 	*/
1092 	for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
1093 	     testdev;
1094 	     ret = uclass_next_device(&testdev)) {
1095 		ut_assertok(ret);
1096 		ut_assert(testdev);
1097 		ut_assert(device_active(testdev));
1098 
1099 		findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
1100 						    testdev->name,
1101 						    &finddev);
1102 
1103 		ut_assertok(findret);
1104 		ut_assert(finddev);
1105 		ut_assert(device_active(finddev));
1106 		ut_asserteq_str(testdev->name, finddev->name);
1107 		ut_asserteq_ptr(testdev, finddev);
1108 	}
1109 
1110 	return 0;
1111 }
1112 DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
1113 
dm_test_device_get_uclass_id(struct unit_test_state * uts)1114 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
1115 {
1116 	struct udevice *dev;
1117 
1118 	ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
1119 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
1120 
1121 	return 0;
1122 }
1123 DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
1124 
dm_test_uclass_names(struct unit_test_state * uts)1125 static int dm_test_uclass_names(struct unit_test_state *uts)
1126 {
1127 	ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
1128 	ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
1129 
1130 	return 0;
1131 }
1132 DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
1133 
dm_test_inactive_child(struct unit_test_state * uts)1134 static int dm_test_inactive_child(struct unit_test_state *uts)
1135 {
1136 	struct dm_test_state *dms = uts->priv;
1137 	struct udevice *parent, *dev1, *dev2;
1138 
1139 	/* Skip the behaviour in test_post_probe() */
1140 	dms->skip_post_probe = 1;
1141 
1142 	ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
1143 
1144 	/*
1145 	 * Create a child but do not activate it. Calling the function again
1146 	 * should return the same child.
1147 	 */
1148 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1149 							UCLASS_TEST, &dev1));
1150 	ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
1151 				"test_child", 0, ofnode_null(), &dev1));
1152 
1153 	ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
1154 						     &dev2));
1155 	ut_asserteq_ptr(dev1, dev2);
1156 
1157 	ut_assertok(device_probe(dev1));
1158 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1159 							UCLASS_TEST, &dev2));
1160 
1161 	return 0;
1162 }
1163 DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
1164 
1165 /* Make sure all bound devices have a sequence number */
dm_test_all_have_seq(struct unit_test_state * uts)1166 static int dm_test_all_have_seq(struct unit_test_state *uts)
1167 {
1168 	struct udevice *dev;
1169 	struct uclass *uc;
1170 
1171 	list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1172 		list_for_each_entry(dev, &uc->dev_head, uclass_node) {
1173 			if (dev->seq_ == -1)
1174 				printf("Device '%s' has no seq (%d)\n",
1175 				       dev->name, dev->seq_);
1176 			ut_assert(dev->seq_ != -1);
1177 		}
1178 	}
1179 
1180 	return 0;
1181 }
1182 DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
1183 
dm_test_dma_offset(struct unit_test_state * uts)1184 static int dm_test_dma_offset(struct unit_test_state *uts)
1185 {
1186        struct udevice *dev;
1187        ofnode node;
1188 
1189        /* Make sure the bus's dma-ranges aren't taken into account here */
1190        node = ofnode_path("/mmio-bus@0");
1191        ut_assert(ofnode_valid(node));
1192        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1193        ut_asserteq_64(0, dev->dma_offset);
1194 
1195        /* Device behind a bus with dma-ranges */
1196        node = ofnode_path("/mmio-bus@0/subnode@0");
1197        ut_assert(ofnode_valid(node));
1198        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1199        ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
1200 
1201        /* This one has no dma-ranges */
1202        node = ofnode_path("/mmio-bus@1");
1203        ut_assert(ofnode_valid(node));
1204        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1205        node = ofnode_path("/mmio-bus@1/subnode@0");
1206        ut_assert(ofnode_valid(node));
1207        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1208        ut_asserteq_64(0, dev->dma_offset);
1209 
1210        return 0;
1211 }
1212 DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
1213