The ICC_SRE_EL2 characteristics are:
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL2.
AArch64 System register ICC_SRE_EL2 is architecturally mapped to AArch32 System register ICC_HSRE.
This register is present only when FEAT_GICv3 is implemented and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to ICC_SRE_EL2 are UNDEFINED.
If EL2 is not implemented, this register is RES0 from EL3.
This register has no effect if EL2 is not enabled in the current Security state.
ICC_SRE_EL2 is a 64-bit register.
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | |||||||||||||||||||||||||||||||
RES0 | Enable | DIB | DFB | SRE |
Reserved, RES0.
Enable. Enables lower Exception level access to ICC_SRE_EL1.
Enable | Meaning |
---|---|
0b0 |
When EL2 is implemented and enabled in the current Security state, EL1 accesses to ICC_SRE_EL1 trap to EL2. |
0b1 |
EL1 accesses to ICC_SRE_EL1 do not trap to EL2. |
If ICC_SRE_EL2.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.
If ICC_SRE_EL2.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.
The reset behavior of this field is:
Disable IRQ bypass.
DIB | Meaning |
---|---|
0b0 |
IRQ bypass enabled. |
0b1 |
IRQ bypass disabled. |
If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_SRE_EL3.DIB.
If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read/write alias of ICC_SRE_EL3.DIB.
In systems that do not support IRQ bypass, this bit is RAO/WI.
The reset behavior of this field is:
Disable FIQ bypass.
DFB | Meaning |
---|---|
0b0 |
FIQ bypass enabled. |
0b1 |
FIQ bypass disabled. |
If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_SRE_EL3.DFB.
If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read/write alias of ICC_SRE_EL3.DFB.
In systems that do not support FIQ bypass, this bit is RAO/WI.
The reset behavior of this field is:
System Register Enable.
SRE | Meaning |
---|---|
0b0 |
The memory-mapped interface must be used. Access at EL2 to any ICH_* or ICC_* register other than ICC_SRE_EL1 or ICC_SRE_EL2, is trapped to EL2. |
0b1 |
The System register interface to the ICH_* registers and the EL1 and EL2 ICC_* registers is enabled for EL2. |
If software changes this bit from 1 to 0, the results are UNPREDICTABLE.
If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.
If EL3 is implemented and ICC_SRE_EL3.SRE==0 this bit is RAZ/WI. If ICC_SRE_EL3.SRE is changed from zero to one, this bit becomes UNKNOWN.
If Realm Management Extension is implemented, this field is RAO/WI.
FEAT_GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI, but this is only allowed if ICC_SRE_EL3.SRE is also RAO/WI.
The reset behavior of this field is:
Execution with ICC_SRE_EL2.SRE set to 0 might make some System registers UNKNOWN.
Accesses to this register use the following encodings in the System register encoding space:
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b100 | 0b1100 | 0b1001 | 0b101 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ICC_SRE_EL3.Enable == '0' then UNDEFINED; elsif HaveEL(EL3) && ICC_SRE_EL3.Enable == '0' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = ICC_SRE_EL2; elsif PSTATE.EL == EL3 then if !EL2Enabled() then UNDEFINED; else X[t, 64] = ICC_SRE_EL2;
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b100 | 0b1100 | 0b1001 | 0b101 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ICC_SRE_EL3.Enable == '0' then UNDEFINED; elsif HaveEL(EL3) && ICC_SRE_EL3.Enable == '0' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else ICC_SRE_EL2 = X[t, 64]; elsif PSTATE.EL == EL3 then if !EL2Enabled() then UNDEFINED; else ICC_SRE_EL2 = X[t, 64];
04/07/2023 11:23; 1b994cb0b8c6d1ae5a9a15edbc8bd6ce3b5c7d68
Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.