Complex integer multiply-add with rotate (indexed)
Multiply the duplicated real components for rotations 0 and 180, or imaginary components for rotations 90 and 270, of the integral numbers in each 128-bit segment of the first source vector by the specified complex number in the corresponding the second source vector segment rotated by 0, 90, 180 or 270 degrees in the direction from the positive real axis towards the positive imaginary axis, when considered in polar representation.
Then add the products to the corresponding components of the complex numbers in the addend vector. Destructively place the results in the corresponding elements of the addend vector. This instruction is unpredicated.
These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees apart.
Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the even-numbered element and the imaginary part in the odd-numbered element.
It has encodings from 2 classes: 16-bit and 32-bit
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | i2 | Zm | 0 | 1 | 1 | 0 | rot | Zn | Zda | ||||||||||||
size<1> | size<0> |
if !HaveSVE2() && !HaveSME() then UNDEFINED; integer esize = 16; integer index = UInt(i2); integer n = UInt(Zn); integer m = UInt(Zm); integer da = UInt(Zda); integer sel_a = UInt(rot<0>); integer sel_b = UInt(NOT(rot<0>)); boolean sub_r = (rot<0> != rot<1>); boolean sub_i = (rot<1> == '1');
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | i1 | Zm | 0 | 1 | 1 | 0 | rot | Zn | Zda | ||||||||||||
size<1> | size<0> |
if !HaveSVE2() && !HaveSME() then UNDEFINED; integer esize = 32; integer index = UInt(i1); integer n = UInt(Zn); integer m = UInt(Zm); integer da = UInt(Zda); integer sel_a = UInt(rot<0>); integer sel_b = UInt(NOT(rot<0>)); boolean sub_r = (rot<0> != rot<1>); boolean sub_i = (rot<1> == '1');
<Zda> |
Is the name of the third source and destination scalable vector register, encoded in the "Zda" field. |
<Zn> |
Is the name of the first source scalable vector register, encoded in the "Zn" field. |
<imm> |
For the 16-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field. |
For the 32-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field. |
<const> |
Is the const specifier,
encoded in
|
CheckSVEEnabled(); integer pairs = VL DIV (2 * esize); integer pairspersegment = 128 DIV (2 * esize); bits(VL) operand1 = Z[n]; bits(VL) operand2 = Z[m]; bits(VL) operand3 = Z[da]; bits(VL) result; for p = 0 to pairs-1 integer segmentbase = p - (p MOD pairspersegment); integer s = segmentbase + index; integer elt1_a = SInt(Elem[operand1, 2 * p + sel_a, esize]); integer elt2_a = SInt(Elem[operand2, 2 * s + sel_a, esize]); integer elt2_b = SInt(Elem[operand2, 2 * s + sel_b, esize]); bits(esize) elt3_r = Elem[operand3, 2 * p + 0, esize]; bits(esize) elt3_i = Elem[operand3, 2 * p + 1, esize]; integer product_r = elt1_a * elt2_a; integer product_i = elt1_a * elt2_b; if sub_r then Elem[result, 2 * p + 0, esize] = elt3_r - product_r; else Elem[result, 2 * p + 0, esize] = elt3_r + product_r; if sub_i then Elem[result, 2 * p + 1, esize] = elt3_i - product_i; else Elem[result, 2 * p + 1, esize] = elt3_i + product_i; Z[da] = result;
If FEAT_SVE2 is enabled or FEAT_SME is enabled, then when PSTATE.DIT is 1:
This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is unpredictable:
Internal version only: isa v33.11seprel, AdvSIMD v29.05, pseudocode v2021-09_rel, sve v2021-09_rc3d ; Build timestamp: 2021-10-06T11:41
Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.