FCVTZU (scalar, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

313029282726252423222120191817161514131211109876543210
sf0011110ftype011001scaleRnRd
rmodeopcode

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTZU <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTZU <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTZU <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTZU <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTZU <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTZU <Xd>, <Dn>, #<fbits>

integer d = UInt(Rd); integer n = UInt(Rn); integer intsize = if sf == '1' then 64 else 32; integer fltsize; FPConvOp op; FPRounding rounding; boolean unsigned; case ftype of when '00' fltsize = 32; when '01' fltsize = 64; when '10' UNDEFINED; when '11' if HaveFP16Ext() then fltsize = 16; else UNDEFINED; if sf == '0' && scale<5> == '0' then UNDEFINED; integer fracbits = 64 - UInt(scale); case opcode<2:1>:rmode of when '00 11' // FCVTZ rounding = FPRounding_ZERO; unsigned = (opcode<0> == '1'); op = FPConvOp_CVT_FtoI; when '01 00' // [US]CVTF rounding = FPRoundingMode(FPCR[]); unsigned = (opcode<0> == '1'); op = FPConvOp_CVT_ItoF; otherwise UNDEFINED;

Assembler Symbols

<Wd>

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd>

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn>

Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn>

Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn>

Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits>

For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPEnabled64(); FPCRType fpcr = FPCR[]; boolean merge = IsMerging(fpcr); integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize; bits(fsize) fltval; bits(intsize) intval; case op of when FPConvOp_CVT_FtoI fltval = V[n]; intval = FPToFixed(fltval, fracbits, unsigned, fpcr, rounding); X[d] = intval; when FPConvOp_CVT_ItoF intval = X[n]; fltval = if merge then V[d] else Zeros(); Elem[fltval, 0, fltsize] = FixedToFP(intval, fracbits, unsigned, fpcr, rounding); V[d] = fltval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is dependent on the general-purpose register written by this instruction might be significantly delayed.


Internal version only: isa v33.11seprel, AdvSIMD v29.05, pseudocode v2021-09_rel, sve v2021-09_rc3d ; Build timestamp: 2021-10-06T11:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.