Unsigned integer convert to floating-point (predicated)
Convert to floating-point from the unsigned integer in each active element of the source vector, and place the results in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain unmodified.
If the input and result types have a different size the smaller type is held unpacked in the least significant bits of elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored. When the result is the smaller type the results are zero-extended to fill each destination element.
It has encodings from 7 classes: 16-bit to half-precision , 32-bit to half-precision , 32-bit to single-precision , 32-bit to double-precision , 64-bit to half-precision , 64-bit to single-precision and 64-bit to double-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | Pg | Zn | Zd | ||||||||||
int_U |
if !HaveSVE() && !HaveSME() then UNDEFINED; integer esize = 16; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 16; integer d_esize = 16; boolean unsigned = TRUE; FPRounding rounding = FPRoundingMode(FPCR[]);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | Pg | Zn | Zd | ||||||||||
int_U |
if !HaveSVE() && !HaveSME() then UNDEFINED; integer esize = 32; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 32; integer d_esize = 16; boolean unsigned = TRUE; FPRounding rounding = FPRoundingMode(FPCR[]);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | Pg | Zn | Zd | ||||||||||
int_U |
if !HaveSVE() && !HaveSME() then UNDEFINED; integer esize = 32; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 32; integer d_esize = 32; boolean unsigned = TRUE; FPRounding rounding = FPRoundingMode(FPCR[]);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | Pg | Zn | Zd | ||||||||||
int_U |
if !HaveSVE() && !HaveSME() then UNDEFINED; integer esize = 64; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 32; integer d_esize = 64; boolean unsigned = TRUE; FPRounding rounding = FPRoundingMode(FPCR[]);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | Pg | Zn | Zd | ||||||||||
int_U |
if !HaveSVE() && !HaveSME() then UNDEFINED; integer esize = 64; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 64; integer d_esize = 16; boolean unsigned = TRUE; FPRounding rounding = FPRoundingMode(FPCR[]);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | Pg | Zn | Zd | ||||||||||
int_U |
if !HaveSVE() && !HaveSME() then UNDEFINED; integer esize = 64; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 64; integer d_esize = 32; boolean unsigned = TRUE; FPRounding rounding = FPRoundingMode(FPCR[]);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | Pg | Zn | Zd | ||||||||||
int_U |
if !HaveSVE() && !HaveSME() then UNDEFINED; integer esize = 64; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 64; integer d_esize = 64; boolean unsigned = TRUE; FPRounding rounding = FPRoundingMode(FPCR[]);
<Zd> |
Is the name of the destination scalable vector register, encoded in the "Zd" field. |
<Pg> |
Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field. |
<Zn> |
Is the name of the source scalable vector register, encoded in the "Zn" field. |
CheckSVEEnabled(); integer elements = VL DIV esize; bits(PL) mask = P[g]; bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros(); bits(VL) result = Z[d]; for e = 0 to elements-1 if ElemP[mask, e, esize] == '1' then bits(esize) element = Elem[operand, e, esize]; bits(d_esize) fpval = FixedToFP(element<s_esize-1:0>, 0, unsigned, FPCR[], rounding); Elem[result, e, esize] = ZeroExtend(fpval); Z[d] = result;
This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is unpredictable:
Internal version only: isa v33.11seprel, AdvSIMD v29.05, pseudocode v2021-09_rel, sve v2021-09_rc3d ; Build timestamp: 2021-10-06T11:41
Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.