Unsigned saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that is half the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For rounded results, see UQRSHRN.
The UQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the UQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.
It has encodings from 2 classes: Scalar and Vector
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | != 0000 | immb | 1 | 0 | 0 | 1 | 0 | 1 | Rn | Rd | |||||||||||||
U | immh | op |
integer d = UInt(Rd); integer n = UInt(Rn); if immh == '0000' then UNDEFINED; if immh<3> == '1' then UNDEFINED; integer esize = 8 << HighestSetBit(immh); integer datasize = esize; integer elements = 1; integer part = 0; integer shift = (2 * esize) - UInt(immh:immb); boolean round = (op == '1'); boolean unsigned = (U == '1');
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | Q | 1 | 0 | 1 | 1 | 1 | 1 | 0 | != 0000 | immb | 1 | 0 | 0 | 1 | 0 | 1 | Rn | Rd | |||||||||||||
U | immh | op |
integer d = UInt(Rd); integer n = UInt(Rn); if immh == '0000' then SEE(asimdimm); if immh<3> == '1' then UNDEFINED; integer esize = 8 << HighestSetBit(immh); integer datasize = 64; integer part = UInt(Q); integer elements = datasize DIV esize; integer shift = (2 * esize) - UInt(immh:immb); boolean round = (op == '1'); boolean unsigned = (U == '1');
<Vd> |
Is the name of the SIMD&FP destination register, encoded in the "Rd" field. |
<Tb> |
Is an arrangement specifier,
encoded in
|
<Vn> |
Is the name of the SIMD&FP source register, encoded in the "Rn" field. |
<Ta> |
Is an arrangement specifier,
encoded in
|
<Vb> |
Is the destination width specifier,
encoded in
|
<d> |
Is the number of the SIMD&FP destination register, in the "Rd" field. |
<Va> |
Is the source width specifier,
encoded in
|
<n> |
Is the number of the first SIMD&FP source register, encoded in the "Rn" field. |
<shift> |
For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits,
encoded in
| ||||||||||||
For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits,
encoded in
|
CheckFPAdvSIMDEnabled64(); bits(datasize*2) operand = V[n]; bits(datasize) result; integer round_const = if round then (1 << (shift - 1)) else 0; integer element; boolean sat; for e = 0 to elements-1 element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift; (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned); if sat then FPSR.QC = '1'; Vpart[d, part] = result;
Internal version only: isa v33.11seprel, AdvSIMD v29.05, pseudocode v2021-09_rel, sve v2021-09_rc3d ; Build timestamp: 2021-10-06T11:41
Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.