Unsigned saturating addition of signed value
Add active signed elements of the source vector to the corresponding unsigned elements of the addend vector, and destructively place the results in the corresponding elements of the addend vector. Each result element is saturated to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination vector register remain unmodified.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | size | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | Pg | Zm | Zdn | |||||||||||
S | U |
if !HaveSVE2() && !HaveSME() then UNDEFINED; integer esize = 8 << UInt(size); integer g = UInt(Pg); integer dn = UInt(Zdn); integer m = UInt(Zm);
<Zdn> |
Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field. |
<T> |
Is the size specifier,
encoded in
|
<Pg> |
Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field. |
<Zm> |
Is the name of the second source scalable vector register, encoded in the "Zm" field. |
CheckSVEEnabled(); integer elements = VL DIV esize; bits(PL) mask = P[g]; bits(VL) operand1 = Z[dn]; bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros(); bits(VL) result; for e = 0 to elements-1 bits(esize) element1 = Elem[operand1, e, esize]; bits(esize) element2 = Elem[operand2, e, esize]; if ElemP[mask, e, esize] == '1' then Elem[result, e, esize] = UnsignedSat(UInt(element1) + SInt(element2), esize); else Elem[result, e, esize] = Elem[operand1, e, esize]; Z[dn] = result;
This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is unpredictable:
Internal version only: isa v33.11seprel, AdvSIMD v29.05, pseudocode v2021-09_rel, sve v2021-09_rc3d ; Build timestamp: 2021-10-06T11:41
Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.